Splitting fields of central simple algebras of exponent two

被引:3
|
作者
Becher, Karim Johannes [1 ]
机构
[1] Univ Antwerp, Dept Wiskunde Informat, B-2020 Antwerp, Belgium
关键词
D O I
10.1016/j.jpaa.2016.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By Merkurjev's Theorem every central simple algebra of exponent two is Brauer equivalent to a tensor product of quaternion algebras. In particular, if every quaternion algebra over a given field is split, then there exists no central simple algebra of exponent two over this field. This note provides an independent elementary proof for the latter fact. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3450 / 3453
页数:4
相关论文
共 50 条