Minimum Description Length and Clustering with Exemplars

被引:0
|
作者
Lai, Po-Hsiang [1 ]
O'Sullivan, Joseph A. [1 ]
Pless, Robert [2 ]
机构
[1] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
[2] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4 | 2009年
关键词
INFORMATION; MODEL;
D O I
10.1109/ISIT.2009.5205937
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an information-theoretic clustering framework for density-based clustering and similarity or distance-based clustering with objective functions of clustering performance derived from stochastic complexity and minimum description length (MDL) arguments. Under this framework, the number of clusters and parameters can be determined in a principled way without prior knowledge from users. We show that similarity-based clustering can be viewed as combinatorial optimization on graphs. We propose two clustering algorithms, one of which relies on a minimum arborescence tree algorithm which returns optimal clustering under the proposed MDL objective function for similarity-based clustering. We demonstrate clustering performance on synthetic data.
引用
收藏
页码:1318 / +
页数:2
相关论文
共 50 条
  • [1] Minimum description length and psychological clustering models
    Lee, MD
    Navarro, DJ
    ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 355 - 384
  • [2] Context Quantization based on Minimum Description Length and Hierarchical Clustering
    Chen, Hui
    Chen, Jianhua
    2016 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2016), 2016, 56
  • [3] An application of minimum description length clustering to partitioning learning curves
    Navarro, DJ
    Lee, MD
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 587 - 591
  • [4] Minimum description length clustering to measure meaningful image complexity
    Mahon, Louis
    Lukasiewicz, Thomas
    PATTERN RECOGNITION, 2024, 145
  • [5] Track Clustering Using Frechet Distance and Minimum Description Length
    Kenefic, Richard J.
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2014, 11 (08): : 512 - 524
  • [6] Spherical Minimum Description Length
    Herntier, Trevor
    Ihou, Koffi Eddy
    Smith, Anthony
    Rangarajan, Anand
    Peter, Adrian
    ENTROPY, 2018, 20 (08):
  • [7] Minimum description length revisited
    Grunwald, Peter
    Roos, Teemu
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2019, 11 (01):
  • [8] A new minimum description length
    Beheshti, S
    Dahleh, MA
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1602 - 1607
  • [9] Minimum description length tutorial
    Grünwald, P
    ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 23 - 79
  • [10] Auto clustering for unsupervised learning of atomic gesture components using minimum description length
    Walter, M
    Psarrou, A
    Gong, SG
    IEEE ICCV WORKSHOP ON RECOGNITION, ANALYSIS AND TRACKING OF FACES AND GESTURES IN REAL-TIME SYSTEMS, PROCEEDINGS, 2001, : 157 - 162