A Model of Hierarchically Consistent Control of Nonlinear Dynamical Systems

被引:0
|
作者
Bagdasaryan, Armen G. [1 ]
Kim, Tai-hoon [2 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Profsoyuznaya 65, Moscow 117997, Russia
[2] Hannam Univ, Dept Multimedia, Daejeon, South Korea
关键词
geometric control; nonlinear system; hierarchical consistency; dynamics; attractors; invariant manifolds; control system synthesis; INVARIANT-MANIFOLDS; SIMULATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the real modern systems are complex, nonlinear, and large-scale. A natural approach for reducing the complexity of large scale systems places a hierarchical structure on the system architecture. In hierarchical control models, the notion of consistency is much important, as it ensures the implementation of high-level objectives by the lower level systems. In this work, we present a model for synthesis of hierarchically consistent control systems for complex nonlinear multidimensional and multicoupled dynamical systems, using invariant manifold theory.
引用
收藏
页码:58 / +
页数:3
相关论文
共 50 条
  • [1] Hierarchically consistent control systems
    Pappas, George J.
    Lafferriere, Gerardo
    Sastry, Shankar
    [J]. Proceedings of the IEEE Conference on Decision and Control, 1998, 4 : 4336 - 4341
  • [2] Hierarchically consistent control systems
    Pappas, GJ
    Lafferriere, G
    Sastry, S
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) : 1144 - 1160
  • [3] Hierarchically consistent control systems
    Pappas, GJ
    Lafferriere, G
    Sastry, S
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4336 - 4341
  • [4] Using SVM to model and control nonlinear dynamical systems
    Zhang, Haoran
    Wang, Xiaodong
    Zhang, Changjiang
    Wang, Jin
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2912 - 2915
  • [5] Model Learning Predictive Control in Nonlinear Dynamical Systems
    Lale, Sahin
    Azizzadenesheli, Kamyar
    Hassibi, Babak
    Anandkumar, Anima
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 757 - 762
  • [6] On the application of an approximate robust model of nonlinear dynamical control systems
    Krumov, AV
    [J]. 2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 42 - 46
  • [7] Nonlinear Control of Networked Dynamical Systems
    Morrison, Megan
    Kutz, J. Nathan
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (01): : 174 - 189
  • [8] Subsystems on nonlinear control dynamical systems
    V. I. Elkin
    [J]. Doklady Mathematics, 2008, 78 : 804 - 806
  • [9] Subsystems on Nonlinear Control Dynamical Systems
    Elkin, V. I.
    [J]. DOKLADY MATHEMATICS, 2008, 78 (02) : 804 - 806
  • [10] Decentralised control of nonlinear dynamical systems
    Udwadia, Firdaus E.
    Koganti, Prasanth B.
    Wanichanon, Thanapat
    Stipanovic, Dusan M.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (04) : 827 - 843