Numerical simulation of crack problems using triangular finite elements with embedded interfaces

被引:7
|
作者
Löblein, J [1 ]
Schröder, J [1 ]
机构
[1] Univ Duisberg Essen, Inst Mech, FB Bauwesen, D-45117 Essen, Germany
关键词
embedded discontinuity; finite element method; crack modeling;
D O I
10.1016/j.commatsci.2004.09.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to propose numerical aspects for the modeling of discrete cracks in quasi-brittle materials using triangular finite elements with an embedded interface based on the formulation in [Computational Mechanics 27 (2001) 463]. The kinematics of the discontinuous displacement field and the variational formulation applied to a body with an internal discontinuity is given. The discontinuity is modeled by additional global degrees of freedom and the continuity of the displacement jumps across the element boundaries is enforced. To show the performance of the model, a single element test and two examples for mode-I dominated fracture, namely a tension test and a three-point bending beam, are discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:435 / 445
页数:11
相关论文
共 50 条
  • [1] Numerical simulation of dynamic fracture using finite elements with embedded discontinuities
    Armero, Francisco
    Linder, Christian
    INTERNATIONAL JOURNAL OF FRACTURE, 2009, 160 (02) : 119 - 141
  • [2] Numerical simulation of dynamic fracture using finite elements with embedded discontinuities
    Francisco Armero
    Christian Linder
    International Journal of Fracture, 2009, 160 : 119 - 141
  • [3] Numerical aspects of a triangular finite element with an embedded discontinuity
    Löblein, J
    Schröder, J
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 422 - 425
  • [4] Simulation of multiphysics problems using adaptive finite elements
    Bengzon, Fredrik
    Johansson, August
    Larson, Mats G.
    Soderlund, Robert
    APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2007, 4699 : 733 - +
  • [5] NUMERICAL DISPERSION IN THE FINITE-ELEMENT METHOD USING TRIANGULAR EDGE ELEMENTS
    WARREN, GS
    SCOTT, WR
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 9 (06) : 315 - 319
  • [6] TRIANGULAR FINITE-ELEMENTS AND NUMERICAL-INTEGRATION
    LANNOY, FG
    COMPUTERS & STRUCTURES, 1977, 7 (05) : 613 - 613
  • [7] Numerical simulation of wave propagation using spectral finite elements
    Hennings B.
    Lammering R.
    Gabbert U.
    CEAS Aeronautical Journal, 2013, 4 (1) : 3 - 10
  • [8] Numerical simulation for cracks detection using the finite elements method
    Bennoud, Salim
    Zergoug, Mourad
    Allali, Abderrazak
    INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2014, 8 (01) : 1 - 9
  • [9] Numerical Simulation of Crack Modeling using Extended Finite Element Method
    Jovicic, Gordana
    Zivkovic, Miroslav
    Jovicic, Nebojsa
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2009, 55 (09): : 549 - 554
  • [10] An interface variables formulation for embedded-crack finite elements
    Bolzon, G
    Corigliano, A
    COMPUTATIONAL PLASTICITY: FUNDAMENTALS AND APPLICATIONS, PTS 1 AND 2, 1997, : 1617 - 1624