A Generic Database Indexing Framework for Large-Scale Geographic Knowledge Graphs

被引:7
|
作者
Sun, Yuhan [1 ]
Sarwat, Mohamed [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
关键词
Spatial index; GeoSpatial Knowledge Graph; range query;
D O I
10.1145/3274895.3274966
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper proposes Riso-Tree, a generic indexing framework for geographic knowledge graphs. Riso-Tree enables fast execution of graph queries that involve spatial predicates (aka. GraSp). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. Riso-Tree first partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders magnitude faster execution time than its counterparts when executing GraSp queries on real knowledge graphs (e.g., WikiData).
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [1] Hub Labels on the database for large-scale graphs with the COLD framework
    Efentakis, Alexandros
    Efstathiades, Christodoulos
    Pfoser, Dieter
    GEOINFORMATICA, 2017, 21 (04) : 703 - 732
  • [2] Hub Labels on the database for large-scale graphs with the COLD framework
    Alexandros Efentakis
    Christodoulos Efstathiades
    Dieter Pfoser
    GeoInformatica, 2017, 21 : 703 - 732
  • [3] Reachability indexing for large-scale graphs: Studies and forecasts
    Fu, Lizhen
    Meng, Xiaofeng
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (01): : 116 - 129
  • [4] SimGrid: a Generic Framework for Large-Scale Distributed Experiments
    Quinson, Martin
    2009 IEEE NINTH INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING (P2P 2009), 2009, : 95 - 96
  • [5] SimGrid: a Generic Framework for Large-Scale Distributed Experiments
    Casanova, Henri
    Legrand, Arnaud
    Quinson, Martin
    2008 UKSIM TENTH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, 2008, : 126 - 131
  • [6] Research and Practice on the Framework for the Construction, Sharing, and Application of Large-scale Geoscience Knowledge Graphs
    Zhu Y.
    Sun K.
    Hu X.
    Lv H.
    Wang X.
    Yang J.
    Wang S.
    Li W.
    Song J.
    Su N.
    Mu X.
    Journal of Geo-Information Science, 2023, 25 (06) : 1215 - 1227
  • [7] Large-Scale Malware Indexing Using Function-Call Graphs
    Hu, Xin
    Chiueh, Tzi-cker
    Shin, Kang G.
    CCS'09: PROCEEDINGS OF THE 16TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2009, : 611 - 620
  • [8] Hierarchical indexing scheme for fast search in large-scale image database
    Ye, HJ
    Xu, GY
    THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 974 - +
  • [9] LargeEA: Aligning Entities for Large-scale Knowledge Graphs
    Ge, Congcong
    Liu, Xiaoze
    Chen, Lu
    Gao, Yunjun
    Zheng, Baihua
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 15 (02): : 237 - 245
  • [10] Linking Surface Facts to Large-Scale Knowledge Graphs
    Radevski, Gorjan
    Gashteovski, Kiril
    Hung, Chia-Chien
    Lawrence, Carolin
    Glavas, Goran
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 7189 - 7207