Periodic cyclic homology as sheaf cohomology

被引:2
|
作者
Cortiñas, G [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
来源
K-THEORY | 2000年 / 20卷 / 02期
关键词
Grothendieck topology; Cuntz-Quillen theory; Jones-Goodwillie character;
D O I
10.1023/A:1007867728238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a noncommutative version of the infinitesimal site of Grothendieck. A theorem of Grothendieck establishes that the cohomology of the structure sheaf on the infinitesimal topology of a scheme of characteristic zero is de Rham cohomology. We prove that, for the noncommutative infinitesimal topology of an associative algebra over a field of characteristic zero, the cohomology of the structure sheaf modulo commutators is periodic cyclic cohomology. We also compute the noncommutative infinitesimal cohomology of other sheaves. For example, we show that infinitesimal hypercohomology with coefficients in K-theory gives the fiber of the Jones-Goodwillie character which goes from K-theory to negative cyclic homology.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 50 条
  • [1] Orbifold cohomology as periodic cyclic homology
    Baranovsky, V
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) : 791 - 812
  • [2] Periodic cyclic homology and derived de Rham cohomology
    Antieau, Benjamin
    ANNALS OF K-THEORY, 2019, 4 (03) : 505 - 519
  • [3] CYCLIC HOMOLOGY AND DERHAM COHOMOLOGY
    LODDER, G
    MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (03) : 489 - 502
  • [4] BIVARIANT CYCLIC COHOMOLOGY AND MODELS FOR CYCLIC HOMOLOGY TYPES
    QUILLEN, D
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 101 (01) : 1 - 33
  • [5] ON EXCISION IN PERIODIC CYCLIC COHOMOLOGY
    CUNTZ, J
    QUILLEN, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (10): : 917 - 922
  • [6] HOMOTYPY ON SHEAF COHOMOLOGY
    SURIA, GV
    MATHEMATISCHE NACHRICHTEN, 1990, 148 : 271 - 275
  • [7] A REMARK ON SINGULAR COHOMOLOGY AND SHEAF COHOMOLOGY
    Petersen, D. A. N.
    MATHEMATICA SCANDINAVICA, 2022, 128 (02) : 229 - 238
  • [8] Coarse Sheaf Cohomology
    Hartmann, Elisa
    MATHEMATICS, 2023, 11 (14)
  • [9] NONARCHIMEDEAN BORNOLOGIES, CYCLIC HOMOLOGY AND RIGID COHOMOLOGY
    Cortinas, Guillermo
    Cuntz, Joachim
    Meyer, Ralf
    Tamme, Georg
    DOCUMENTA MATHEMATICA, 2018, 23 : 1197 - 1245
  • [10] Hopf-cyclic homology and cohomology with coefficients
    Hajac, PM
    Khalkhali, M
    Rangipour, B
    Sommerhäuser, Y
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 667 - 672