Monte Carlo method, classical fields and Bose statistics

被引:22
|
作者
Witkowska, Emilia [1 ]
Gajda, Mariusz [1 ,2 ]
Rzazewski, Kazimierz [2 ,3 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[2] Cardinal Stefan Wyszynski Univ, Fac Math & Sci, Warsaw, Poland
[3] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
关键词
EINSTEIN CONDENSATE; FLUCTUATIONS; GASES; IDEAL; APPROXIMATION; TEMPERATURE; ENSEMBLE;
D O I
10.1016/j.optcom.2009.10.080
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we combine the classical fields method with the Monte Carlo approach for description of statistical properties of a Bose-Einstein condensate. We show that the canonical ensemble of interacting classical fields can be generated using Metropolis algorithm. We obtain a probability distribution of the condensate occupation for the weakly interacting Bose gas at low temperatures and pay a particular attention to the two momenta of this distribution: mean and variance of the condensate occupation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:671 / 675
页数:5
相关论文
共 50 条
  • [1] Bose statistics and classical fields
    Witkowska, Emilia
    Gajda, Mariusz
    Rzazewski, Kazimierz
    [J]. PHYSICAL REVIEW A, 2009, 79 (03):
  • [2] Out-of-equilibrium Monte Carlo simulations of a classical gas with Bose-Einstein statistics
    Di Pietro Martinez, M.
    Giuliano, M.
    Hoyuelos, M.
    [J]. PHYSICAL REVIEW E, 2020, 102 (06)
  • [3] Bayesian statistics and the Monte Carlo method
    Herzog, TN
    [J]. PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 136 - 146
  • [4] MONTE CARLO METHOD IN QUANTUM STATISTICS
    FOSDICK, LD
    [J]. SIAM REVIEW, 1968, 10 (03) : 315 - &
  • [5] Green-Function-Based Monte Carlo Method for Classical Fields Coupled to Fermions
    Weisse, Alexander
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (15)
  • [6] Classical fields method for a relativistic interacting Bose gas
    Witkowska, Emilia
    Zin, Pawel
    Gajda, Mariusz
    [J]. PHYSICAL REVIEW D, 2009, 79 (02):
  • [7] A Monte Carlo method for the numerical simulation of Tsallis statistics
    Salazar, R
    Toral, R
    [J]. PHYSICA A, 2000, 283 (1-2): : 59 - 64
  • [8] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [9] STUDY OF STATISTICS OF THE OPTICAL-FIELDS IN NON-LINEAR MEDIA BY THE MONTE-CARLO METHOD
    KANDIDOV, VP
    [J]. IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1983, 47 (08): : 1583 - 1589
  • [10] Monte Carlo framework for noncontinuous interactions between particles and classical fields
    Wesp, Christian
    van Hees, Hendrik
    Meistrenko, Alex
    Greiner, Carsten
    [J]. PHYSICAL REVIEW E, 2015, 91 (04):