Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria

被引:32
|
作者
Li, Xingjie [1 ]
Li, Dongbo [1 ]
Yan, Zhenning [1 ]
Ao, Yansong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
AQUEOUS-SOLUTION; HEAVY-METALS; BINDING CHARACTERISTICS; SURFACE-ADSORPTION; SOIL BACTERIUM; CELL-WALL; COPPER; STRAIN; CU2+; MECHANISM;
D O I
10.1039/c8ra06270f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) not only promote growth and heavy metal uptake by plants but are promising biosorbents for heavy metals remediation. However, there exist arguments over whether extracellular adsorption (biosorption) or intracellular accumulation (bioaccumulation) play dominant roles in Cd(ii) adsorption. Therefore, three cadmium-resistant PGPR, Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31 were used to study bioaccumulation and biosorption mechanisms under different initial Cd(ii) concentrations, using batch adsorption experiments, desorption experiments, scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. In this study, with the increase of the initial Cd(ii) concentrations, the removal efficiency of strains decreased and the adsorption capacity improved. The highest Cd(ii) removal efficiency values were 25.05%, 53.88%, and 86.06% for GX_5, GX_15, and GX_31 with 20 mg l(-1) of Cd(ii), while the maximum adsorption capacity values were 7.97, 17.13, and 26.43 mg g(-1) of GX_5, GX_15, and GX_31 with 100 mg l(-1) of Cd(ii). Meanwhile, the removal efficiency and adsorption capacity could be ordered as GX_31 > GX_15 > GX_5. The dominant adsorption mechanism for GX_5 was bioaccumulation (50.66-60.38%), while the dominant mechanisms for GX_15 and GX_31 were biosorptions (60.29-64.89% and 75.93-79.45%, respectively). The bioaccumulation and biosorption mechanisms were verified by SEM-EDX, TEM and FTIR spectroscopy. These investigations could provide a more comprehensive understanding of metal-bacteria sorption reactions as well as practical application in remediation of heavy metals.
引用
收藏
页码:30902 / 30911
页数:10
相关论文
共 50 条
  • [2] Differential Effects of Plant Growth-Promoting Rhizobacteria on Maize Growth and Cadmium Uptake
    Ahmad I.
    Akhtar M.J.
    Asghar H.N.
    Ghafoor U.
    Shahid M.
    [J]. Journal of Plant Growth Regulation, 2016, 35 (2) : 303 - 315
  • [3] Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria
    Li, Xingjie
    Li, Dongbo
    Yan, Zhenning
    Ao, Yansong
    [J]. RSC ADVANCES, 2018, 8 (58) : 33523 - 33533
  • [4] Plant responses to plant growth-promoting rhizobacteria
    L. C. van Loon
    [J]. European Journal of Plant Pathology, 2007, 119 : 243 - 254
  • [5] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    [J]. EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [6] Plant Growth-Promoting Actions of Rhizobacteria
    Spaepen, Stijn
    Vanderleyden, Jos
    Okon, Yaacov
    [J]. PLANT INNATE IMMUNITY, 2009, 51 : 283 - 320
  • [7] Evaluation of Inoculation of plant Growth-Promoting Rhizobacteria on Cadmium Uptake by Canola and Barley
    Baharlouei, Jila
    Pazira, Ebrahim
    Khavazi, Kazem
    Solhi, Mahmood
    [J]. ENVIRONMENTAL SCIENCE AND TECHNOLOGY, PT 2, 2011, 6 : 128 - 132
  • [8] Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications
    dos Santos, Roberta Mendes
    Escobar Diaz, Paola Andrea
    Bentes Lobo, Laiana Lana
    Rigobelo, Everlon Cid
    [J]. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2020, 4
  • [9] IRON REGULATION OF PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    SCHROTH, MN
    LEONG, J
    [J]. PHYTOPATHOLOGY, 1981, 71 (02) : 231 - 232
  • [10] Current Perspectives on Plant Growth-Promoting Rhizobacteria
    Javid A. Parray
    Sumira Jan
    Azra N. Kamili
    Raies A. Qadri
    Dilfuza Egamberdieva
    Parvaiz Ahmad
    [J]. Journal of Plant Growth Regulation, 2016, 35 : 877 - 902