Asymptotic study for Stokes-Brinkman model with jump embedded transmission conditions

被引:8
|
作者
Angot, Philippe [1 ]
Carbou, Gilles [2 ]
Peron, Victor [2 ,3 ]
机构
[1] Aix Marseille Univ, LATP, Equipe Anal Appl Ctr Math & Informat CMI, CNRS,UMR 7353, Technopole Chateau Gombert,39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Univ Pau & Pays Adour, Lab Math & Applicat Pau, CNRS, UMR 5142, Batiment IPRA,Ave Univ BP 1155, F-64013 Pau, France
[3] Univ Pau & Pays Adour, INRIA Bordeaux Sud Ouest, Mag 3D, Ave Unive BP 155, F-64013 Pau, France
关键词
porous media; Stokes equation; Brinkman model; WKB expansion; POROUS THIN-LAYER; PENALIZATION METHOD; FLOW;
D O I
10.3233/ASY-151336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, one considers the coupling of a Brinkman model and Stokes equations with jump embedded transmission conditions. In this model, one assumes that the viscosity in the porous region is very small. Then we derive a Wentzel-Kramers-Brillouin (WKB) expansion in power series of the square root of this small parameter for the velocity and the pressure which are solution of the transmission problem. This WKB expansion is justified rigorously by proving uniform errors estimates.
引用
收藏
页码:223 / 249
页数:27
相关论文
共 18 条
  • [1] Modified Interfacial Boundary Conditions for the Stokes-Brinkman Flow Model
    Abzalilov, D. F.
    Mardanov, R. F.
    Sharafutdinov, V. F.
    Zaripov, S. K.
    [J]. TRANSPORT IN POROUS MEDIA, 2023, 149 (03) : 891 - 918
  • [2] A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions
    Angot, Philippe
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) : 697 - 702
  • [3] Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system
    Chen, Nan
    Gunzburger, Max
    Wang, Xiaoming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 658 - 676
  • [4] Rigorous estimates for the 2D Oseen-Brinkman transmission problem in terms of the Stokes-Brinkman expansion
    Kohr, Mirela
    Sekhar, G. P. Raja
    Wendland, Wolfgang L.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (18) : 2225 - 2239
  • [5] STOKES-BRINKMAN TRANSMISSION PROBLEMS ON LIPSCHITZ AND C1 DOMAINS IN RIEMANNIAN MANIFOLD
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) : 493 - 537
  • [6] Two-dimensional Stokes-Brinkman cell model - a boundary integral formulation
    Kohr, Mirela
    Sekhar, G. P. Raja
    Ului, Elena M.
    Wendland, Wolfgang L.
    [J]. APPLICABLE ANALYSIS, 2012, 91 (02) : 251 - 275
  • [7] BOUNDARY INTEGRAL EQUATIONS FOR A THREE-DIMENSIONAL STOKES-BRINKMAN CELL MODEL
    Kohr, Mirela
    Sekhar, G. P. Raja
    Wendland, Wolfgang L.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (12): : 2055 - 2085
  • [8] An Iterative Method for Shape Optimal Design of Stokes-Brinkman Equations with Heat Transfer Model
    Yan, Wenjing
    Jing, Feifei
    Hou, Jiangyong
    Gao, Zhiming
    Zheng, Nannan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [9] A Stokes-Brinkman model of the fluid flow in a periodic cell with a porous body using the boundary element method
    Mardanov, R. F.
    Zaripov, S. K.
    Sharafutdinov, V. F.
    Dunnett, S. J.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 88 : 54 - 63
  • [10] WELL-POSED STOKES/BRINKMAN AND STOKES/DARCY COUPLING REVISITED WITH NEW JUMP INTERFACE CONDITIONS
    Angot, Philippe
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05): : 1875 - 1911