Electrochemical characterisation of oxygen nonstoichiometry and transport in mixed conducting oxides -: Application to La0.4Ba0.6Fe0.8Co0.2O3-δ

被引:11
|
作者
Diethelm, S [1 ]
Van herle, J [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Ind Energy Syst, CH-1015 Lausanne, Switzerland
关键词
(La; Ba)(Fe; Co)O-3; relaxation techniques; impedance spectroscopy; oxygen transport; oxygen nonstoichiometry; perovskite;
D O I
10.1016/j.ssi.2004.07.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical techniques were applied to a coulometric titration cell to study oxygen nonstoichiometry (delta) and transport in the perovskite-type oxide La0.4Ba0.6Fe0.8Co0.2O3-delta. Slow scan voltammetry (3muV/s) was used to obtain 6 vs. the oxygen partial pressure (P(O-2)) data. The voltammograms were further analysed using a simple defect model to yield the absolute value of the oxygen nonstoichiometry. Relaxation measurements were performed to obtain chemical diffusion (D) and surface exchange (k) coefficients. In particular, the suitability of converting the relaxation data to the frequency domain for analysis purpose was examined. Impedance spectroscopy (EIS) measurements were also performed on the same cell to allow direct comparison. A satisfactory agreement was obtained for h but the k values were systematically different by a factor 2 to 3. This discrepancy was attributed to the short-time extrapolation used in the numerical conversion procedure. Finally, other transport coefficients (sigma(i), D-V and D-O) were calculated from the chemical diffusion and nonstoichiometry data. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
  • [1] Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ
    Lane, JA
    Benson, SJ
    Waller, D
    Kilner, JA
    SOLID STATE IONICS, 1999, 121 (1-4) : 201 - 208
  • [2] Electrochemical characterisation of a La0.6Sr0.4Co0.2Fe0.8O3-δ cathode for IT-SOFCs
    Esquirol, A
    Bonanos, N
    Brandon, N
    Kilner, J
    Mogensen, M
    SOLID OXIDE FUEL CELLS VIII (SOFC VIII), 2003, 2003 (07): : 580 - 590
  • [3] Oxygen Transport in Perovskite Type Oxide La0.6Sr0.4Co0.2Fe0.8O3-δ
    Kudo, Honami
    Yashiro, Keiji
    Hashimoto, Shin-ichi
    Amezawa, Koji
    Kawada, Tatsuya
    Mizusaki, Junichiro
    HIGH TEMPERATURE CORROSION AND MATERIALS CHEMISTRY 10, 2013, 50 (44): : 37 - 42
  • [4] La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ electrophoretic coating for oxygen transport membranes
    Guironnet L.
    Geffroy P.-M.
    Jouay F.
    Pagnoux C.
    Richet N.
    Chartier T.
    Chemical Engineering Science: X, 2019, 1
  • [5] Thermoanalysis, nonstoichiometry and thermal expansion of La0.4Sr0.6Co0.2Fe0.8O3-δ, La0.2Sr0.8Co0.2Fe0.8O3-δ, La0.9Sr0.1Co1/3Fe1/3Ni1/3O3-δ and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3-δ perovskites
    Swierczek, Konrad
    SOLID STATE IONICS, 2008, 179 (1-6) : 126 - 130
  • [6] Oxygen nonstoichiometry and chemical expansion of mixed conducting La0.1Sr0.9Co0.8Fe0.2O3-δ
    Choi, M. -B.
    Lim, D. -K.
    Wachsman, E. D.
    Song, S. -J.
    SOLID STATE IONICS, 2012, 221 : 22 - 27
  • [7] Oxygen Diffusion in Ceramic Mixed Conducting La0.6Sr0.4Co0.2Fe0.8O3-δ: The Role of Grain and Twin Boundaries
    Thoreton, V
    Niania, M.
    Druce, J.
    Tellez, H.
    Kilner, J. A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (04)
  • [8] High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ oxygen nonstoichiometry and chemical diffusion constant
    Katsuki, M
    Wang, SR
    Dokiya, M
    Hashimoto, T
    SOLID STATE IONICS, 2003, 156 (03) : 453 - 461
  • [9] Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ as Cathode Materials for the Application in Intermediate Temperature Fuel Cells
    Ried, P.
    Bucher, E.
    Preis, W.
    Sitte, W.
    Holtappels, P.
    SOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2, 2007, 7 (01): : 1217 - 1224
  • [10] Electrochemical study of La0.6Sr0.4Co0.8Fe0.2O3 during oxygen evolution reaction
    Garcia, Eric M.
    Taroco, Hosane A.
    Matencio, Tulio
    Domingues, Rosana Z.
    dos Santos, Jacqueline A. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) : 6400 - 6406