Model Fit after Pairwise Maximum Likelihood

被引:1
|
作者
Barendse, M. T. [1 ]
Ligtvoet, R. [2 ]
Timmerman, M. E. [3 ]
Oort, F. J. [2 ]
机构
[1] Univ Ghent, Dept Data Anal, Fac Psychol & Educ Sci, B-9000 Ghent, Belgium
[2] Univ Amsterdam, Dept Educ, Res Inst Child Dev & Educ, Amsterdam, Netherlands
[3] Univ Groningen, Dept Psychometr & Stat, Heymans Inst Psychol Res Psychometr & Stat, Groningen, Netherlands
来源
FRONTIERS IN PSYCHOLOGY | 2016年 / 7卷
关键词
discrete data; pairwise maximum likelihood analysis; weighted least squares analysis; fit statistics; STRUCTURAL EQUATION MODELS; WEIGHTED LEAST-SQUARES; POLYTOMOUS VARIABLES; CONTINGENCY-TABLES; POLYCHORIC CORRELATIONS; EXPECTED FREQUENCIES; ORDINAL VARIABLES; PERFORMANCE;
D O I
10.3389/fpsyg.2016.00528
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log-likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two-way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Comparison of Maximum Likelihood with Conditional Pairwise Likelihood Estimation of Person Parameters in the Rasch Model
    Draxler, Clemens
    Tutz, Gerhard
    Zink, Katharina
    Guerer, Can
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (06) : 2007 - 2017
  • [2] Maximum likelihood estimates of pairwise rearrangement distances
    Serdoz, Stuart
    Egri-Nagy, Attila
    Sumner, Jeremy
    Holland, Barbara R.
    Jarvis, Peter D.
    Tanaka, Mark M.
    Francis, Andrew R.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2017, 423 : 31 - 40
  • [3] Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model
    Yu, Tao
    Li, Pengfei
    Chen, Baojiang
    Yuan, Ao
    Qin, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 454 - 469
  • [4] A maximum-likelihood estimation of pairwise relatedness for autopolyploids
    K Huang
    S T Guo
    M R Shattuck
    S T Chen
    X G Qi
    P Zhang
    B G Li
    [J]. Heredity, 2015, 114 : 133 - 142
  • [5] Processing the pairwise comparison matrix by the maximum likelihood method
    Yu. V. Bugaev
    B. E. Nikitin
    S. N. Chernyaeva
    [J]. Automation and Remote Control, 2013, 74 : 537 - 542
  • [6] Processing the pairwise comparison matrix by the maximum likelihood method
    Bugaev, Yu. V.
    Nikitin, B. E.
    Chernyaeva, S. N.
    [J]. AUTOMATION AND REMOTE CONTROL, 2013, 74 (03) : 537 - 542
  • [7] A maximum-likelihood estimation of pairwise relatedness for autopolyploids
    Huang, K.
    Guo, S. T.
    Shattuck, M. R.
    Chen, S. T.
    Qi, X. G.
    Zhang, P.
    Li, B. G.
    [J]. HEREDITY, 2015, 114 (02) : 133 - 142
  • [8] GOODNESS OF FIT CRITERION FOR MAXIMUM LIKELIHOOD ANALYSIS
    BEARDSWORTH, E
    ULRICKSO.M
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (10): : 893 - +
  • [9] A viable method for goodness-of-fit test in maximum likelihood fit
    Zhang Feng
    Gao Yuan-Ning
    Huo Lei
    [J]. CHINESE PHYSICS C, 2011, 35 (06) : 580 - 584
  • [10] A viable method for goodness-of-fit test in maximum likelihood fit
    张锋
    高原宁
    霍雷
    [J]. Chinese Physics C, 2011, 35 (06) : 580 - 584