Dual pairs in pin(p,q) and Howe correspondences for the spin representation

被引:5
|
作者
Slupinski, MJ
机构
[1] Univ Strasbourg 1, Dept Math, F-67084 Strasbourg, France
[2] CNRS, URA 01, F-67084 Strasbourg, France
关键词
D O I
10.1006/jabr.1997.7279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain examples of dual pairs in the group Pin(V x W) by considering the inverse images of the subgroups O(V) x Id(W) and Id(V) x O(W) under the double covering map pi: Pin(V x W) --> O(V x W). The main technical results are the definition of the group of determinant graded double covers of O(V) and the fact that the map W bar right arrow pi(-1)(O(V) x Id(W)) defines a homomorphism from the Witt group to this group when the ground field k satisfies k*/(k*)(2) congruent to Z(2) and -1 is not a square in k. We also show that the spin representation of Pin(V x W) sets up Howe correspondences for each of these dual pairs when k = R. (C) 1998 Academic Press.
引用
收藏
页码:512 / 540
页数:29
相关论文
共 50 条