The actions of Out(Fk) on the boundary of Outer space and on the space of currents:: minimal sets and equivariant incompatibility

被引:24
|
作者
Kapovich, Ilya
Lustig, Martin
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Aix Marseille 3, Math LATP, F-13397 Marseille 20, France
关键词
D O I
10.1017/S0143385706001015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for k >= 5 there does not exist a continuous map a partial derivative CV(F-k) -> PCurr(F-k) that is either Out(F-k)-equivariant or Out(F-k)-anti-equivariant. Here partial derivative CV(F-k) is the 'length function' boundary of Culler-Vogtmann's Outer space CV(F-k), and PCurr(F-k) is the space of projectivized geodesic currents for F-k. We also prove that, if k >= 3, for the action of Out(F-k) on PCurr(F-k) and for the diagonal action of Out(F-k) on the product space partial derivative CV(F-k) x PCurr(F-k), there exist unique non-empty minimal closed Out(F-k) -invariant sets. Our results imply that for k >= 3 any continuous Out(F-k)-equivariant embedding of CV(F-k) into PCurr(F-k) (such as the PattersonSullivan embedding) produces a new compactification of Outer space, different from the usual 'length function' compactification CV(F-k) = CV (F-k) U partial derivative CV (F-k).
引用
收藏
页码:827 / 847
页数:21
相关论文
共 50 条
  • [1] Dynamics of out(Fn) on the boundary of outer space
    Guirardel, V
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (04): : 433 - 465
  • [2] EQUIVARIANT MAPPINGS AND INVARIANT SETS ON MINKOWSKI SPACE
    Manoel, Miriam
    Oliveira, Leandro N.
    COLLOQUIUM MATHEMATICUM, 2022, 167 (01) : 93 - 107
  • [3] EQUIVARIANT EMBEDDINGS OF ZP-ACTIONS IN EUCLIDEAN SPACE
    ALLEN, RJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A684 - A685
  • [4] Minimal sets for flows on moduli space
    John Smillie
    Barak Weiss
    Israel Journal of Mathematics, 2004, 142 : 249 - 260
  • [5] Minimal sets for flows on moduli space
    Smillie, J
    Weiss, B
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 142 (1) : 249 - 260
  • [6] Random trees in the boundary of outer space
    Kapovich, Ilya
    Maher, Joseph
    Pfaff, Catherine
    Taylor, Samuel J.
    GEOMETRY & TOPOLOGY, 2022, 26 (01) : 127 - 162
  • [7] On indecomposable trees in the boundary of outer space
    Reynolds, Patrick
    GEOMETRIAE DEDICATA, 2011, 153 (01) : 59 - 71
  • [8] On indecomposable trees in the boundary of outer space
    Patrick Reynolds
    Geometriae Dedicata, 2011, 153 : 59 - 71
  • [9] THE BOUNDARY OF THE OUTER SPACE OF A FREE PRODUCT
    Horbez, Camille
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 221 (01) : 179 - 234
  • [10] The boundary of the outer space of a free product
    Camille Horbez
    Israel Journal of Mathematics, 2017, 221 : 179 - 234