Some superlinear problems with nonlocal diffusion coefficient

被引:3
|
作者
Figueiredo-Sousa, Tarcyana S. [1 ]
Morales-Rodrigo, Cristian [1 ]
Suarez, Antonio [1 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, E-41080 Seville, Spain
关键词
Non-local diffusion coefficient; Superlinear problem; Bifurcation method; POSITIVE SOLUTIONS; UNIQUENESS;
D O I
10.1016/j.jmaa.2019.123519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a superlinear elliptic problem with a non-local diffusion coefficient. We show that there exists a drastic change on the structure of the set of positive solutions when the non-local coefficient grows fast enough to infinity. We combine mainly sub-super and bifurcation methods to obtain our results. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Nontrivial solutions of superlinear nonlocal problems
    Bisci, Giovanni Molica
    Repovs, Dusan
    Servadei, Raffaella
    [J]. FORUM MATHEMATICUM, 2016, 28 (06) : 1095 - 1110
  • [2] On the principal eigenvalue of some nonlocal diffusion problems
    Garcia-Melian, Jorge
    Rossi, Julio D.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 21 - 38
  • [3] Diffusion in Media with Membranes and Some Nonlocal Parabolic Problems
    Kopytko, Bohdan
    Osypchuk, Mykhailo
    Shevchuk, Roman
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2024, 75 (11) : 1641 - 1665
  • [4] ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLOCAL DIFFUSION PROBLEMS
    Boni, Theodore K.
    N'Gohisse, Firmin K.
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2008, 35 : 21 - 31
  • [5] Superlinear nonlocal fractional problems with infinitely many solutions
    Binlin, Zhang
    Bisci, Giovanni Molica
    Servadei, Raffaella
    [J]. NONLINEARITY, 2015, 28 (07) : 2247 - 2264
  • [6] ON SOME MODEL DIFFUSION PROBLEMS WITH A NONLOCAL LOWER ORDER TERM
    N.H.CHANG
    M.CHIPOT
    [J]. Chinese Annals of Mathematics, 2003, (02) : 147 - 166
  • [7] On some model diffusion problems with a nonlocal lower order term
    Chang, NH
    Chipot, M
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2003, 24 (02): : 147 - 166
  • [8] EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS
    Cortazar, Carmen
    Elgueta, Manuel
    Garcia-Melian, Jorge
    Martinez, Salome
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) : 2136 - 2164
  • [9] Superlinear damped vibration problems on time scales with nonlocal boundary conditions
    Wei, Yongfang
    Bai, Zhanbing
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (06): : 1009 - 1029
  • [10] ON SOME NONLOCAL VARIATIONAL PROBLEMS
    Chipot, Michel
    Gangbo, Wilfrid
    Kawohl, Bernd
    [J]. ANALYSIS AND APPLICATIONS, 2006, 4 (04) : 345 - 356