Computational design of phenazine derivative molecules as redox-active electrolyte materials in alkaline aqueous organic flow batteries

被引:6
|
作者
Zhang, Wenfei [1 ]
Chen, Yanli [1 ]
Wu, Tai-Rui [2 ,3 ]
Xia, Xue [1 ]
Xu, Juan [1 ]
Chen, Zhidong [1 ]
Cao, Jianyu [1 ]
Wu, De-Yin [2 ,3 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Jiangsu, Peoples R China
[2] Xiamen Univ, State Key Lab Phys Chem Solid Surface, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; ENERGY; APPROXIMATION; CATHOLYTES;
D O I
10.1039/d2nj01769e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phenazine derivatives represent an important class of emerging redox-active organic electrolyte materials in aqueous flow batteries for sustainable energy storage applications. But when serving as the anolyte or catholyte, the working voltage is relatively low in comparison to their inorganic counterparts. Moreover, most of the reported phenazine-based electrolyte materials have insufficient water-solubility, which plague their application to aqueous flow battery systems. Here, we investigated the redox potentials and solvation free energies for phenazine derivatives containing various electron-donating or electron-withdrawing groups at different substitution positions by applying density functional theory calculations combined with a thermodynamic Born-Haber cycle. The calculation results are validated with experimental data. On the basis of our calculations, we identified several promising anolyte and catholyte candidates for alkaline aqueous organic flow batteries. The information obtained from this study can provide useful clues for designing high-performance redox-active electrolyte materials to promote the practical application of aqueous organic flow batteries.
引用
收藏
页码:11662 / 11668
页数:7
相关论文
共 50 条
  • [1] Organic redox-active molecules for alkaline aqueous redox flow batteries
    Lu, Biao
    Yu, Kaifeng
    Shao, Weide
    Ji, Ya
    Zhang, Feifei
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 47
  • [2] Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries
    Chen, Ruiyong
    Zhang, Peng
    Chang, Zhenjun
    Yan, Junfeng
    Kraus, Tobias
    CHEMSUSCHEM, 2023, 16 (08)
  • [3] Solubility and Stability of Redox-Active Organic Molecules in Redox Flow Batteries
    Singh, Vikram
    Byon, Hye Ryung
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (18): : 7562 - 7575
  • [4] Bipolar Redox-Active Molecules in Non-Aqueous Organic Redox Flow Batteries: Status and Challenges
    Li, Min
    Case, Julia
    Minteer, Shelley D.
    CHEMELECTROCHEM, 2021, 8 (07): : 1215 - 1232
  • [5] Electrochemical Performance of Mixed Redox-Active Organic Molecules in Redox Flow Batteries
    Amini, Kiana
    Jing, Yan
    Gao, Jinxu
    Sosa, Jordan D.
    Gordon, Roy G.
    Aziz, Michael J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (12)
  • [6] Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
    Winsberg, Jan
    Hagemann, Tino
    Janoschka, Tobias
    Hager, Martin D.
    Schubert, Ulrich S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (03) : 686 - 711
  • [7] Development of organic redox-active materials in aqueous flow batteries: Current strategies and future perspectives
    Pan, Mingguang
    Shao, Minhua
    Jin, Zhong
    SMARTMAT, 2023, 4 (04):
  • [8] Computational screening of organic molecules as redox active species in redox flow batteries
    Moon, Yeni
    Han, Young-Kyu
    CURRENT APPLIED PHYSICS, 2016, 16 (09) : 939 - 943
  • [9] TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries
    Winsberg, Jan
    Stolze, Christian
    Muench, Simon
    Liedl, Ferenc
    Hager, Martin D.
    Schubert, Ulrich S.
    ACS ENERGY LETTERS, 2016, 1 (05): : 976 - 980
  • [10] Towards a comprehensive data infrastructure for redox-active organic molecules targeting non-aqueous redox flow batteries
    Duke, Rebekah
    Bhat, Vinayak
    Sornberger, Parker
    Odom, Susan A.
    Risko, Chad
    DIGITAL DISCOVERY, 2023, 2 (04): : 1152 - 1162