QUASI-EMPIRICAL BAYES ESTIMATION OF THE PARAMETERS OF AN ARMA(p1, p2) MODEL: SUBSPACE RESTRICTIONS

被引:0
|
作者
Farrell, Patrick J. [1 ]
Saleh, A. K. Md Ehanses [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
来源
PAKISTAN JOURNAL OF STATISTICS | 2010年 / 26卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Empirical Bayes; Mean Square Error Matrices; Risk Functions; Time Series;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the ARMA(p(1), p(2)) model: X-t - theta(1) Xt-1 - ... - theta X-p1(t-p1) = epsilon(t) - alpha(1)epsilon(t-1) - ... - alpha(p2)epsilon(t-p2) where {epsilon(t)} are distributed as i.i.d.N(0, sigma(2)), setting p = p(1) + p(2) we consider the problem of estimation of the p x 1 parameter vector zeta = (theta', alpha')' where theta' = (theta(1),...,theta(p1)) and alpha' = (alpha(1),...,alpha(p2)), when it is suspected that zeta may belong to the subspace H zeta = h, where both the m x p matrix H and the m x 1 vector h consist of constants. Five estimators are defined and their asymptotic distributional bias, M S E matrices, and risk expressions are obtained and compared.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 50 条