The complex of non-crossing diagonals of a polygon

被引:1
|
作者
Braun, Benjamin [1 ]
Ehrenborg, Richard [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Non-convex polygon; Associahedra; Simplicial complex; Discrete Morse theory;
D O I
10.1016/j.jcta.2010.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a convex n-gon P in R-2 with vertices in general position, it is well known that the simplicial complex theta(P) with vertex set given by diagonals in P and facets given by triangulations of P is the boundary complex of a polytope of dimension n - 3. We prove that for any non-convex polygonal region P with n vertices and h + 1 boundary components, theta(P) is a ball of dimension n + 3h - 4. We also provide a new proof that theta(P) is a sphere when P is convex with vertices in general position. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:642 / 649
页数:8
相关论文
共 50 条
  • [1] Gray codes for non-crossing partitions and dissections of a convex polygon
    Huemer, Clemens
    Hurtado, Ferran
    Noy, Marc
    Omana-Pulido, Elsa
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) : 1509 - 1520
  • [2] Non-crossing frameworks with non-crossing reciprocals
    Orden, D
    Rote, G
    Santos, F
    Servatius, B
    Servatius, H
    Whiteley, W
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (04) : 567 - 600
  • [3] Non-Crossing Frameworks with Non-Crossing Reciprocals
    David Orden
    Günter Rote
    Francisco Santos
    Brigitte Servatius
    Herman Servatius
    Walter Whiteley
    Discrete & Computational Geometry, 2004, 32 : 567 - 600
  • [4] k-pairs non-crossing shortest paths in a simple polygon
    Papadopoulou, E
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (06) : 533 - 552
  • [5] k-pairs non-crossing shortest paths in a simple polygon
    Papadopoulou, E
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 305 - 314
  • [6] Comparison between the non-crossing and the non-crossing on lines properties
    Campbell, D.
    Pratelli, A.
    Radici, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [7] Non-Crossing Tableaux
    Pavlo Pylyavskyy
    Annals of Combinatorics, 2009, 13 : 323 - 339
  • [8] Non-crossing matchings
    A. A. Vladimirov
    Problems of Information Transmission, 2013, 49 : 54 - 57
  • [9] Non-Crossing Tableaux
    Pylyavskyy, Pavlo
    ANNALS OF COMBINATORICS, 2009, 13 (03) : 323 - 339
  • [10] Non-crossing matchings
    Vladimirov, A. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2013, 49 (01) : 54 - 57