Hyperspectral compression using spectral signature matching with error encoding

被引:3
|
作者
Reitz, JP
Brower, BV
Lan, A
机构
来源
HYPERSPECTRAL REMOTE SENSING AND APPLICATIONS | 1996年 / 2821卷
关键词
hyperspectral; compression; imaging;
D O I
10.1117/12.257185
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Hyperspectral image data present increasing challenges to current transmission bandwidth and storage capabilities. The large amounts of spectrally redundant information present in these data make hyperspectral compression techniques extremely attractive. This paper presents a hyperspectral compression algorithm which was designed to maintain the spectral accuracy needed for standard hyperspectral analytical techniques. Spectral accuracy is maintained through an approach that extracts and separately codes the hyperspectral signatures present in each pixel.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 50 条
  • [1] ECG Compression through segment matching and progressive error encoding
    Brito, M.
    Henriques, J.
    Carvalho, P.
    Ribeiro, B.
    Antunes, M.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 135 - +
  • [2] Classification of hyperspectral imagery using SIFT for spectral matching
    Xu, Yiping
    Hu, Kaoning
    Tian, Yan
    Peng, Fuyuan
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 2, PROCEEDINGS, 2008, : 704 - 708
  • [3] Spectral Curve Shape Matching Using Derivatives in Hyperspectral Images
    Liu, Delian
    Han, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (04) : 504 - 508
  • [4] Hyperspectral Data Compression using Lasso Algorithm for Spectral Decorrelation
    Alissou, Simplice A.
    Zhang, Ye
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [5] Three dimensional hyperspectral imagery data compression using VQ with spectral-feature-coding-based fast matching
    Changchun Inst of Optics and Fine, mechanics, Chinese Acad of Sciences, Changchun, China
    Tien Tzu Hsueh Pao, 5 (11-16, 28):
  • [6] Detection of Missing Aircrafts by Spectral Signature Identification using Hyperspectral images
    Deepa, V
    Kala, L.
    2017 INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC), 2017, : 497 - 501
  • [7] Hyperspectral data compression by using rational function curve fitting in spectral signature subintervals and Savitsky-Golay smoothing filter
    Mersedeh Beitollahi
    S. Abolfazl Hosseini
    Sayed A. Hadei
    Earth Science Informatics, 2022, 15 : 1215 - 1232
  • [8] Hyperspectral data compression by using rational function curve fitting in spectral signature subintervals and Savitsky-Golay smoothing filter
    Beitollahi, Mersedeh
    Hosseini, S. Abolfazl
    Hadei, Sayed A.
    EARTH SCIENCE INFORMATICS, 2022, 15 (02) : 1215 - 1232
  • [9] Hyperspectral Texture Synthesis Using Histogram and Power Spectral Density Matching
    Sarkar, Subhadip
    Healey, Glenn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (05): : 2261 - 2270
  • [10] LEARNING DEEP SPECTRAL FEATURES FOR HYPERSPECTRAL DATA USING CONVOLUTION OVER SPECTRAL SIGNATURE SHAPE
    Deshpande, Shailesh
    Thakur, Rohit
    Balamuralidhar, P.
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,