Molecular dynamics simulation to explore the impact of wax crystal on the formation of methane hydrate

被引:10
|
作者
Li, Zhi [1 ]
Liu, Bei [2 ]
Gong, Yinghua [1 ]
Chen, Guangjin [2 ]
Li, Tianduo [1 ]
机构
[1] QiLu Univ Technol, Shandong Acad Sci, Shandong Prov Key Lab Mol Engn, Jinan 250353, Peoples R China
[2] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics; Methane hydrate; Wax; Hydrate formation; INHIBITION;
D O I
10.1016/j.molliq.2021.118229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The combined problem caused by wax and hydrate deposition is the key issue to be considered for the subsea multiphase (crude oil, gas, and water) flow assurance. In our study, molecular dynamics technique was performed to generate the solid state wax crystal and further study the impact of wax crystal on the formation of methane hydrate on the microscopic level. Our simulation results showed that wax crystal played a dual role in methane hydrate formation (i.e. promotion and inhibition effects), depending on its size. Small wax crystal would shorten the hydrate nucleation time from 19 ns to about 12 ns, facilitate the 51262 cage formation and increase the conversion ratio of methane and water molecules to methane hydrate by more than 1.5 times. In this process, the competitive capture of methane in gas-liquid, gas-hydrate and liquid-hydrate phases could be detected. When the size of wax crystal exceeded the critical value, the formation of hydrate would be inhibited and the nucleation time was prolonged beyond 500 ns. In this case, the competition of methane capture between wax crystal and aqueous solution would dominated the whole process. The presence of small wax crystal accelerated the hydrate nucleation and growth by facilitating the molecular migration of H2O and CH4 to a certain extent and promoting the assembly of water and methane molecules into hydrate precursors. However, a further increase in the diffusion velocity of methane and water molecules induced by the stronger gas adsorption performance of more wax would lead to the aggregation of methane molecules into large nano bubbles, reducing the CH4 concentration in the solution far below the hydrate formation threshold value. Eventually, hydrate cages would not be formed and survival. The results in this work would contribute to a better understanding of the wax-hydrate interaction.(C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation
    Liao, Qingyun
    Shi, Bohui
    Li, Sha
    Song, Shangfei
    Chen, Yuchuan
    Zhang, Jinjun
    Yao, Haiyuan
    Li, Qingping
    Gong, Jing
    FUEL, 2021, 297
  • [2] Analysis of crystal growth of methane hydrate using molecular dynamics simulation
    Yuhara, Daisuke
    Hiratsuka, Masaki
    Takaiwa, Daisuke
    Yasuoka, Kenji
    MOLECULAR SIMULATION, 2015, 41 (10-12) : 918 - 922
  • [3] Effects of carbon nanotube on methane hydrate formation by molecular dynamics simulation
    Li, Tanyu
    Liu, Ni
    Huang, Jialei
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 368
  • [4] Effects of carbon nanotube on methane hydrate formation by molecular dynamics simulation
    Li, Tanyu
    Liu, Ni
    Huang, Jialei
    Journal of Molecular Liquids, 2022, 368
  • [5] Molecular dynamics simulation of methane hydrate formation on metal surface with oil
    Zi, Mucong
    Chen, Daoyi
    Wu, Guozhong
    CHEMICAL ENGINEERING SCIENCE, 2018, 191 : 253 - 261
  • [6] Molecular dynamics simulation on methane hydrate formation in clay nanopores of edge surfaces
    Mi, Fengyi
    He, Zhongjin
    Cheng, Liwei
    Jiang, Guosheng
    Ning, Fulong
    APPLIED CLAY SCIENCE, 2023, 243
  • [7] Effects of wax on the formation of methane hydrate in oil-dominate systems: Experiments and molecular dynamics simulations
    Wang, Limin
    Zheng, Xin
    Xiao, Peng
    Huang, Xing
    Liu, Bei
    Li, Zhi
    Chen, Guangjin
    Sun, Changyu
    FUEL, 2024, 357
  • [8] Molecular dynamics simulation of methane hydrate dissociation by depressurisation
    Yan, KeFeng
    Li, XiaoSen
    Chen, ZhaoYang
    Li, Bo
    Xu, ChunGang
    MOLECULAR SIMULATION, 2013, 39 (04) : 251 - 260
  • [9] Molecular dynamics simulation of dissociation process for methane hydrate
    Yasuoka, K
    Murakoshi, S
    GAS HYDRATES: CHALLENGES FOR THE FUTURE, 2000, 912 : 678 - 684
  • [10] Molecular Dynamics Simulation of Methane Hydrate Formation and Dissociation in the Clay Pores with Fatty Acids
    Ji, Haoqing
    Chen, Daoyi
    Zhao, Chen
    Wu, Guozhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (02): : 1318 - 1325