Ultrahigh-aspect-ratio light cages: fabrication limits and tolerances of free-standing 3D nanoprinted waveguides

被引:11
|
作者
Burger, Johannes [1 ]
Kim, Jisoo [2 ]
Jang, Bumjoon [2 ]
Gargiulo, Julian [1 ]
Schmidt, Markus A. [2 ,3 ,4 ,5 ]
Maier, Stefan A. [1 ,6 ]
机构
[1] Ludwig Maximilians Univ Munchen, Nanoinst Munich, Chair Hybrid Nanosyst, Koniginstr 10, D-80539 Munich, Germany
[2] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[3] Friedrich Schiller Univ Jena, Otto Schott Inst Mat Res OSIM, Fraunhoferstr 6, D-07743 Jena, Germany
[4] Friedrich Schiller Univ Jena, Abbe Ctr Photon, Max Wien Pl 1, D-07743 Jena, Germany
[5] Friedrich Schiller Univ Jena, Fac Phys, Max Wien Pl 1, D-07743 Jena, Germany
[6] Imperial Coll London, Blackett Lab, Dept Phys, London SW7 2AZ, England
基金
欧盟地平线“2020”;
关键词
PHOTONIC BAND-GAP; OPTICAL-PROPERTIES; HOLLOW; FIBERS; INDEX; SPECTROSCOPY; GUIDANCE;
D O I
10.1364/OME.419398
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional laser nanoprinting represents a unique approach for implementing on-chip hollow-core waveguides. Here we discuss the fabrication characteristics of the light cage geometry arising from the used two-photon polymerization lithography. We reveal the current limits of achievable waveguide length (3 cm), single strand aspect ratio (8200) and modal attenuation. Very high reproducibility for light cages on the same chip is found, while different conditions in fabrication cycles impose chip-to-chip variations. We also highlight the relevance of including reinforcement rings to prevent structural collapse. The results presented uncover key issues that result from nanoprinting light cages and can be transferred to other nanoprinted waveguides.
引用
收藏
页码:1046 / 1057
页数:12
相关论文
共 50 条
  • [1] Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles
    Chen, Guofang
    Soper, Steven A.
    McCarley, Robin L.
    LANGMUIR, 2007, 23 (23) : 11777 - 11781
  • [2] Approaching the Limits of Aspect Ratio in Free-Standing Al 2 O 3 3D Shell Structures
    Burgmann, Stephanie
    Lid, Markus
    Chaikasetsin, Settasit
    Bjordal, Dag Skjerven
    Prinz, Fritz
    Provine, John
    Berto, Filippo
    van Helvoort, Antonius T. J.
    Torgersen, Jan
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (10)
  • [3] Droplet 3D cryobioprinting for fabrication of free-standing and volumetric structures
    Weygant, Joshua
    Entezari, Ali
    Koch, Fritz
    Galaviz, Ricardo Andre
    Garciamendez, Carlos Ezio
    Hernandez, Pavel
    Ortiz, Vanessa
    Ruiz, David Sebastian Rendon
    Aguilar, Francisco
    Andolfi, Andrea
    Cai, Ling
    Maharjan, Sushila
    Osorio, Anayancy
    Zhang, Yu Shrike
    AGGREGATE, 2024, 5 (05):
  • [4] High-Aspect-Ratio Free-Standing Membrane Waveguides for Mid-Infrared Nanophotonics
    Vlk, Marek
    Datta, Anurup
    Alberti, Sebastian
    Aksnes, Astrid
    Murugan, Ganapathy Senthil
    Jagerska, Jana
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [5] Fabrication of Free-Standing, Self-Aligned, High-Aspect-Ratio Synthetic Ommatidia
    Jun, Brian M.
    Serra, Francesca
    Xia, Yu
    Kang, Hong Suk
    Yang, Shu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30671 - 30676
  • [6] Free-standing millimeter-range 3D waveguides for on-chip optical interconnects
    Andrishak, Artur
    Jacob, Bejoys
    Alves, Tiago L.
    Maibohm, Christian
    Romeira, Bruno
    Nieder, Jana B.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Investigation of laser-induced fabrication of free-standing, 3D metal microstructures
    Bemis, David W.
    Converse, Steve
    Amos, Mcian
    Farrer, Richard A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [8] Fabrication of free-standing, 3D metal microstructures via laser-induced aggregation
    Bemis, David W.
    Farrer, Richard A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [9] Free-Standing 3D Supramolecular Hybrid Particle Structures
    Ling, Xing Yi
    Phang, In Yee
    Maijenburg, Wouter
    Schonherr, Holger
    Reinhoudt, David N.
    Vancso, G. Julius
    Huskens, Jurrician
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (05) : 983 - 985
  • [10] Free-standing, mobile 3D porous silicon microstructures
    Lammel, G
    Renaud, P
    SENSORS AND ACTUATORS A-PHYSICAL, 2000, 85 (1-3) : 356 - 360