Feature extraction using the constrained gradient

被引:28
|
作者
Lacroix, V [1 ]
Acheroy, M [1 ]
机构
[1] Royal Mil Acad Belgium, Signal & Image Ctr, B-1000 Brussels, Belgium
关键词
feature extraction; line extraction; corner extraction; gradient; satellite images; aerial images;
D O I
10.1016/S0924-2716(97)00035-X
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Low-level operators are needed in most computer vision applications in order to get relevant image primitives. In this paper, we present a line and a corner detector. Both operators use specific constraints on the gradient of the image intensity. The operators are applied to satellite and aerial images. The line detector is very useful for extracting roads even on the noisy SAR images, while the corner detector enables to detect salient points such as corners of buildings in aerial images. The information brought by these detectors completes the edge-based description of an image. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 50 条
  • [1] Feature Extraction Using Constrained Approximation and Suppression
    Washizawa, Yoshikazu
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (02): : 201 - 210
  • [2] Feature extraction using constrained maximum variance mapping
    Li, Bo
    Huang, De-Shuang
    Wang, Chao
    Liu, Kun-Hong
    PATTERN RECOGNITION, 2008, 41 (11) : 3287 - 3294
  • [3] Gradient normalization based gradient feature extraction
    Sun, Guangling
    2008 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2008, : 904 - 908
  • [4] Illumination invariant feature extraction using relative gradient difference
    Ren, Huorong
    Yu, Pei
    Zhang, Peng
    OPTIK, 2015, 126 (23): : 4531 - 4533
  • [5] Facial feature extraction using gradient features and MQDF matching
    Ohyama, W.
    Shridhar, M.
    Watta, P.
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, 2006, : 329 - +
  • [6] Non-negative Feature Extraction using Conjugate Gradient Method
    Zhang, Jiawen
    Chen, Wen-Sheng
    Pan, Binbin
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 402 - 405
  • [7] Image Feature Extraction Using Gradient Local Auto-Correlations
    Kobayashi, Takumi
    Otsu, Nobuyuki
    COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 346 - 358
  • [8] Invariant Feature Extraction for CNN Classifier by using Gradient Reversal Layer
    Ueda, Michiaki
    Kanda, Keijiro
    Miyao, Junichi
    Miyamoto, Shogo
    Nakano, Yukiko
    Kurita, Takio
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 851 - 856
  • [9] Accelerating Local Feature Extraction Using Two Stage Feature Selection and Partial Gradient Computation
    Lee, Keundong
    Lee, Seungjae
    Oh, Weon-Geun
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT III, 2015, 9010 : 366 - 380
  • [10] Feature Extraction of Constrained Dynamic Latent Variables
    Ma, Yanjun
    Zhao, Shunyi
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (10) : 5637 - 5645