Umbilic Lines in Orientational Order

被引:48
|
作者
Machon, Thomas [1 ]
Alexander, Gareth P.
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW X | 2016年 / 6卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Condensed Matter Physics; Interdisciplinary Physics; Soft Matter; REAL-SPACE OBSERVATION; SKYRMION LATTICE; BLUE-PHASE; POLARIZATION SINGULARITIES; ELECTROMAGNETIC-WAVES; TRANSVERSE FIELDS; LIQUID-CRYSTALS; GEOMETRY; STATES; KNOTS;
D O I
10.1103/PhysRevX.6.011033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three-dimensional orientational order in systems whose ground states possess nonzero gradients typically exhibits linelike structures or defects:. lines in cholesterics or Skyrmion tubes in ferromagnets, for example. Here, we show that such lines can be identified as a set of natural geometric singularities in a unit vector field, the generalization of the umbilic points of a surface. We characterize these lines in terms of the natural vector bundles that the order defines and show that they give a way to localize and identify Skyrmion distortions in chiral materials-in particular, that they supply a natural representative of the Poincare dual of the cocycle describing the topology. Their global structure leads to the definition of a self-linking number and helicity integral which relates the linking of umbilic lines to the Hopf invariant of the texture.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On curvature lines going through an umbilic.
    Delloue
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1928, 187 : 702 - 703
  • [2] Umbilic singularities and lines of curvature on ellipsoids of ℝ4
    Débora Lopes
    Jorge Sotomayor
    Ronaldo Garcia
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 453 - 483
  • [3] Dislocation lines in the hyperbolic umbilic diffraction catastrophe
    Nye, J. F.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2072): : 2299 - 2313
  • [4] Umbilic and tangential singularities on configurations of principal curvature lines
    Garcia, R
    Sotomayor, J
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (01): : 1 - 17
  • [5] Totally umbilic isometric immersions and curves of order two
    Sugiyama, Tadashi
    Adachi, Toshiaki
    MONATSHEFTE FUR MATHEMATIK, 2007, 150 (01): : 73 - 81
  • [6] Totally Umbilic Isometric Immersions and Curves of Order Two
    Tadashi Sugiyama
    Toshiaki Adachi
    Monatshefte für Mathematik, 2007, 150 : 73 - 81
  • [7] Umbilic singularities and lines of curvature on ellipsoids of R4
    Lopes, Debora
    Sotomayor, Jorge
    Garcia, Ronaldo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 453 - 483
  • [8] On the patterns of principal curvature lines around a curve of umbilic points
    Garcia, R
    Sotomayor, J
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (01): : 13 - 24
  • [9] WILLMORE TORI WITH UMBILIC LINES AND MINIMAL-SURFACES IN HYPERBOLIC SPACE
    BABICH, M
    BOBENKO, A
    DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) : 151 - 185
  • [10] Principal Curvature Lines Near a Partially Umbilic Point of Codimension One
    Sotomayor, Jorge
    Lopes, Debora
    Garcia, Ronaldo
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 162 - 181