Superalgebras and dimensions of algebras

被引:10
|
作者
Vaughan-Lee, M [1 ]
机构
[1] Univ Oxford Christ Church, Oxford OX1 1DP, England
关键词
D O I
10.1142/S0218196798000065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several authors have used the representation theory of symmetric groups and superalgebras to prove that certain classes of algebras are nilpotent. We show how to extend these techniques to facilitate the computation of the dimensions of relatively free algebras, and we prove two general theorems which formalize the techniques. The ideas described here have been used in the computation of the dimensions of the associated Lie rings of free Engel-4 groups of exponent 5.
引用
收藏
页码:97 / 125
页数:29
相关论文
共 50 条
  • [1] δ-Derivations of Algebras and Superalgebras
    Kaygorodov, I.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 374 - 380
  • [2] Representations of alternative algebras and superalgebras
    Trushina M.N.
    Shestakov I.P.
    Journal of Mathematical Sciences, 2012, 185 (3) : 504 - 512
  • [3] On identities of baric algebras and superalgebras
    Bernad, J
    Gonzalez, S
    Martinez, C
    Iltyakov, AV
    JOURNAL OF ALGEBRA, 1997, 197 (02) : 385 - 408
  • [4] On δ-derivations of Lie algebras and superalgebras
    Zusmanovich, Pasha
    JOURNAL OF ALGEBRA, 2010, 324 (12) : 3470 - 3486
  • [5] CLIFFORD ALGEBRAS AS SUPERALGEBRAS AND QUANTIZATION
    LEITES, DA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 58 (02) : 150 - 152
  • [6] NOVIKOV SUPERALGEBRAS IN LOW DIMENSIONS
    Kang, Yifang
    Chen, Zhiqi
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (03) : 251 - 257
  • [7] Novikov Superalgebras in Low Dimensions
    Yifang Kang
    Zhiqi Chen
    Journal of Nonlinear Mathematical Physics, 2009, 16 : 251 - 257
  • [8] Projection operators for Lie algebras, superalgebras, and quantum algebras
    Smirnov, YF
    LATIN-AMERICAN SCHOOL OF PHYSICS XXX ELAF: GROUP THEORY AND ITS APPLICATIONS, 1996, (365): : 99 - 116
  • [9] On algebras and superalgebras with linear codimension growth
    Giambruno, A
    La Mattina, D
    Misso, P
    GROUPS, RINGS AND GROUP RINGS, 2006, 248 : 173 - 182
  • [10] On structure and TKK algebras for Jordan superalgebras
    Barbier, Sigiswald
    Coulembier, Kevin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (02) : 684 - 704