Modeling the Self-Assembly of Benzenedicarboxylic Acids Using Monte Carlo and Molecular Dynamics Simulations

被引:53
|
作者
Martsinovich, Natalia [1 ]
Troisi, Alessandro
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2010年 / 114卷 / 10期
关键词
LIQUID-SOLID INTERFACE; MM3; FORCE-FIELD; TEREPHTHALIC ACID; CRYSTAL-STRUCTURE; CARBOXYLIC-ACIDS; PHASE-TRANSFORMATIONS; AU(111) SURFACES; CYANURIC ACID; BENZOIC-ACID; ADSORPTION;
D O I
10.1021/jp911671b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a theoretical modeling Study of self-assembly Of Molecules into two-dimensional (2D) hydrogen-bonded networks. We compare two computational techniques, molecular dynamics (MD) and Monte Carlo (MC) Calculations, in order to find out whether these computational techniques are efficient in modeling the process of self-assembly and in predicting the ordered supramolecular structures. Terephthalic acid, isophthalic acid, and phthalic acid, which have been widely studied experimentally, are used as test systems. According to both computational techniques, terephthalic acid molecules form ordered Structures made of parallel molecular chains (same as observed in experiment) at high Surface coverage, whereas less symmetric isophthalic and phthalic acid molecules mostly form disordered arrangements of zigzag chains or long isolated zigzag chains. Both computational techniques reproduce the supramolecular Structure of terephthalic acid, the most symmetric of these molecules. However, MD simulations are more robust, whereas MC simulation results are very dependent oil the choice of the starting Structure.
引用
收藏
页码:4376 / 4388
页数:13
相关论文
共 50 条
  • [1] Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods
    Sun, Yi
    Wang, Qi
    [J]. SOFT MATTER, 2013, 9 (07) : 2172 - 2186
  • [2] Deriving molecular bonding from a macromolecular self-assembly using kinetic Monte Carlo simulations
    Silly, Fabien
    Weber, Ulrich K.
    Shaw, Adam Q.
    Burlakov, Victor M.
    Castell, Martin R.
    Briggs, G. A. D.
    Pettifor, David G.
    [J]. PHYSICAL REVIEW B, 2008, 77 (20)
  • [3] Monte Carlo simulations of amphiphilic nanoparticle self-assembly
    Davis, Jonathan R.
    Panagiotopoulos, Athanassios Z.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19):
  • [4] Directed Nanoscale Self-Assembly of Molecular Wires Interconnecting Nodal Points Using Monte Carlo Simulations
    Boscoboinik, A. M.
    Manzi, S. J.
    Tysoe, W. T.
    Pereyra, V. D.
    Boscoboinik, J. A.
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (19) : 6642 - 6649
  • [5] Kinetic Monte Carlo simulations of quantum dot self-assembly
    Abramson, Matthew
    Coleman, Hunter J.
    Simmonds, Paul J.
    Schulze, Tim P.
    Ratsch, Christian
    [J]. JOURNAL OF CRYSTAL GROWTH, 2022, 597
  • [6] Equilibrium states of self-assembly systems: Monte Carlo simulations
    de Moraes, Joaquim N. B.
    Figueiredo, Wagner
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (20): : 5648 - 5650
  • [7] Atomistic Monte Carlo and molecular dynamics simulation of the bulk phase self-assembly of semifluorinated alkanes
    Tsourtou, Flora D.
    Alexiadis, Orestis
    Mavrantzas, Vlasis G.
    Kolonias, Vasileios
    Housos, Efthymios
    [J]. CHEMICAL ENGINEERING SCIENCE, 2015, 121 : 32 - 50
  • [8] Molecular dynamics simulations of viral capsid self-assembly
    Nguyen, Hung D.
    Brooks, Charles L., III
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 55 - 55
  • [9] Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations
    Lísal, M
    Hall, CK
    Gubbins, KE
    Panagiotopoulos, AZ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (03): : 1171 - 1184
  • [10] A Monte Carlo study of the self-assembly of bacteriorhodopsin
    Jagannathan, K
    Chang, RW
    Yethiraj, A
    [J]. BIOPHYSICAL JOURNAL, 2002, 83 (04) : 1902 - 1916