Confinement of CO2 inside carbon nanotubes

被引:0
|
作者
Faginas-Lago, Noelia [1 ]
Apriliyanto, Yusuf Bramastya [2 ,3 ]
Lombardi, Andrea [1 ]
机构
[1] Univ Perugia, Dipartimento Chim Biol & Biotecnol, Perugia, Italy
[2] Indonesia Def Univ, Dept Chem, Kampus Unhan Komplek IPSC Sentul, Bogor, Indonesia
[3] IPB Univ, Dept Chem, Kampus IPB Dramaga, Bogor, Indonesia
来源
EUROPEAN PHYSICAL JOURNAL D | 2021年 / 75卷 / 05期
关键词
COVALENT ORGANIC FRAMEWORKS; ENERGY-TRANSFER; GAS-ADSORPTION; POROUS CARBON; FORCE-FIELD; CAPTURE; HYDROGEN; SEPARATION; DYNAMICS; SIMULATION;
D O I
10.1140/epjd/s10053-021-00176-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a preliminary study based on molecular dynamics calculations to investigate the adsorption of pure CO2 on flexible single-walled carbon nanotubes (SWCNTs) of different sizes. The adsorption capacities of SWCNTs were simulated and the effect of chirality and diameter of SWCNTs was assessed, to check them as sizable carbon structured materials suitable for CO2 confinement and storage. The potential energy surfaces, describing the intermolecular interactions involving CO2-SWCNT and CO2-CO2 pairs, have been described specifically by adopting the improved lennard jones model potential. The intramolecular interactions within the SWCNT were considered explicitly since they are responsible for out-of-plane movements of carbon atoms and the flexibility of nanotubes. These well-formulated potentials are well capable of defining CO2 confinement through physisorption and guarantee a quantitative description and realistic results for the dynamics of the interactions. The flexible SWCNTs can adsorb up to 35 wt% at 273 K, a property that makes them potentially versatile materials competitive with other carbon-derived adsorbents to cope with CO2 gas emission.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Confinement of CO2 Inside (20,0) Single-Walled Carbon Nanotubes
    Faginas-Lago, Noelia
    Lombardi, Andrea
    Apriliyanto, Yusuf Bramastya
    Pacifici, Leonardo
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022 WORKSHOPS, PT VI, 2022, 13382 : 275 - 289
  • [2] F2 storage by confinement inside carbon nanotubes
    Gtari, Wiem Felah
    Tangour, Bahoueddine
    [J]. CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (01) : 15 - 19
  • [3] Confinement of the Pentanitrogen Cation Inside Carbon Nanotubes
    Battaglia, Stefano
    Evangelisti, Stefano
    Leininger, Thierry
    Faginas-Lago, Noelia
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2018, PT V, 2018, 10964 : 579 - 592
  • [4] The Effects of Confinement inside Carbon Nanotubes on Catalysis
    Pan, Xiulian
    Bao, Xinhe
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (08) : 553 - 562
  • [5] Turning CO2 into Carbon Nanotubes
    不详
    [J]. CHEMICAL ENGINEERING PROGRESS, 2020, 116 (10) : 9 - 10
  • [6] Confinement Effects on Water Clusters Inside Carbon Nanotubes
    Hernandez-Rojas, J.
    Calvo, F.
    Breton, J.
    Gomez Llorente, J. M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (32): : 17019 - 17028
  • [7] A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes
    Wang, Jijie
    Lu, Sheng-mei
    Li, Jun
    Li, Can
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (99) : 17615 - 17618
  • [8] Synthesis of Platinum-Ruthenium Nanoparticles under Supercritical CO2 and their Confinement in Carbon Nanotubes: Hydrogenation Applications
    Castillejos, Eva
    Jahjah, Mohamad
    Favier, Isabelle
    Orejon, Arantxa
    Pradel, Christian
    Teuma, Emmanuelle
    Masdeu-Bulto, Anna M.
    Serp, Philippe
    Gomez, Montserrat
    [J]. CHEMCATCHEM, 2012, 4 (01) : 118 - 122
  • [9] Water diffusion inside carbon nanotubes: mutual effects of surface and confinement
    Zheng, Yong-gang
    Ye, Hong-fei
    Zhang, Zhong-qiang
    Zhang, Hong-wu
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (02) : 964 - 971
  • [10] Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes
    Chen, Wei
    Fan, Zhongli
    Gu, Lin
    Bao, Xinhe
    Wang, Chunlei
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (22) : 3905 - 3907