Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp.

被引:50
|
作者
Yu, R
Yamada, A
Watanabe, K
Yazawa, K
Takeyama, H
Matsunaga, T
Kurane, R
机构
[1] Sagami Chem Res Ctr, Sagamihara, Kanagawa 2290012, Japan
[2] Tokyo Univ Agr & Technol, Dept Biotechnol, Koganei, Tokyo 1848588, Japan
关键词
D O I
10.1007/s11745-000-0619-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eicosapentaenoic acid (EPA) synthesis gene cluster from an EPA-producing bacterium, Shewanella sp. SCRC-2738, was cloned into a broad-host range vector, pJRD215, and then introduced into a marine cyanobacterium, Synechococcus sp. NKBG15041c, by conjugation. The transconjugant cyanobacteria produced 3.7 +/- 0.2% (2.24 +/- 0.13 mg/L) EPA (n-3) and 2.5 +/- 0.2% (1.49 +/- 0.06 mg/L) eicosatetraenoic acid (n-3) of the total fatty acids when the cells were cultured at 23 degreesC at a light intensity of 1,000-1,500 Lux. The EPA and eico-satetraenoic acid contents of the cells were increased to 4.6 +/- 0.6% (3.86 +/- 1.11 mg/L) and 4.7 +/- 0.3% (3.86 +/- 0.82 mg/L), and 7.5 +/- 0.3% (1.76 +/- 0.10 mg/L) and 5.1 +/- 0.2% (1.19 +/- 0.06 mg/L) when they were cultured at low temperature (18 degreesC) and at lower light intensity (40 Lux), respectively.
引用
收藏
页码:1061 / 1064
页数:4
相关论文
共 50 条
  • [1] Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp.
    Takeyama, H
    Takeda, D
    Yazawa, K
    Yamada, A
    Matsunaga, T
    MICROBIOLOGY-UK, 1997, 143 : 2725 - 2731
  • [2] Some characteristics of arsenate transport in a marine cyanobacterium, Synechococcus sp.
    Takahashi, A
    Kawakami, H
    Iwakiri, K
    Matsuto, S
    APPLIED ORGANOMETALLIC CHEMISTRY, 2001, 15 (04) : 291 - 298
  • [3] Analysis of stress responsive gene for salinity in a marine cyanobacterium Synechococcus sp.
    Takeyama, H
    Nakayama, H
    NEW DEVELOPMENTS IN MARINE BIOTECHNOLOGY, 1998, : 255 - 257
  • [4] Feeding by raphidophytes on the cyanobacterium Synechococcus sp.
    Jeong, Hae Jin
    Seong, Kyeong Ah
    Kang, Nam Seon
    Du Yoo, Yeong
    Nam, Seung Won
    Park, Jae Yeon
    Shin, Woongghi
    Glibert, Patricia M.
    Johns, Desmond
    AQUATIC MICROBIAL ECOLOGY, 2010, 58 (02) : 181 - 195
  • [5] Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973
    Knoot, Cory J.
    Khatri, Yogan
    Hohlman, Robert M.
    Sherman, David H.
    Pakrasi, Himadri B.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (08): : 1941 - 1951
  • [6] Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway
    Tomoko Yoshino
    Yue Liang
    Daichi Arai
    Yoshiaki Maeda
    Toru Honda
    Masaki Muto
    Natsumi Kakunaka
    Tsuyoshi Tanaka
    Applied Microbiology and Biotechnology, 2015, 99 : 1521 - 1529
  • [7] Growth and metabolite production of the marine cyanobacterium Synechococcus sp (Chroococcales) in function to irradiance
    Rosales-Loaiza, Nestor
    Guevara, Miguel
    Lodeiros, Cesar
    Morales, Ever
    REVISTA DE BIOLOGIA TROPICAL, 2008, 56 (02) : 421 - 429
  • [8] Production of Hydrogen by Thermophilic Cyanobacterium Synechococcus sp. strain H-1
    Asami, Kazuhiro
    Fujioka, Hiromasa
    Yamamoto, Takashi
    Ohtaguchi, Kazuhisa
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2011, 44 (01) : 37 - 43
  • [9] Changes in membrane lipids and carotenoids during light acclimation in a marine cyanobacterium Synechococcus sp.
    Olimpio Montero
    Alberto Sánchez-Guijo
    Luis M Lubián
    Gonzalo Martínez-Rodríguez
    Journal of Biosciences, 2012, 37 : 635 - 645
  • [10] Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism
    Six, C
    Thomas, JC
    Brahamsha, B
    Lemoine, Y
    Partensky, F
    AQUATIC MICROBIAL ECOLOGY, 2004, 35 (01) : 17 - 29