GENERALIZED EIGENVALUES FOR FULLY NONLINEAR SINGULAR OR DEGENERATE OPERATORS IN THE RADIAL CASE

被引:0
|
作者
Demengel, Francoise [1 ]
机构
[1] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
关键词
PRINCIPAL EIGENVALUES; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; 1ST EIGENVALUE; BIFURCATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend some existence results concerning generalized eigenvalues for fully nonlinear operators, singular or degenerate. We consider the radial case and we prove the existence of ail infinite number of eigenvalues, simple and isolated. This completes the results obtained by the author with Isabeau Birindelli for the first eigenvalues in the radial case, and the results obtained for the Pucci's operator by Busca Esteban and Quaas and for the p-Laplace operator by Del Pino and Manasevich.
引用
收藏
页码:1127 / 1154
页数:28
相关论文
共 50 条