Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term

被引:2
|
作者
Mousaab, Bouafia [1 ,2 ]
Adnan, Yassine [3 ]
机构
[1] Univ 8 May 1945 Guelma, BP 401, Guelma 24000, Algeria
[2] ISCN, FR CNRS 3335, LMAH, F-76600 Le Havre, France
[3] Normandie Univ, UNIHAVRE, LMAH, FR CNRS 3335,ISCN, F-76600 Le Havre, France
关键词
Linear optimization; Kernel function; Interior point methods; Complexity bound; ALGORITHM;
D O I
10.1051/ro/2022032
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we are generalizing the efficient kernel function with trigonometric barrier term given by (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545). Using an elegant and simple analysis and under some easy to check conditions, we explore the best complexity result for the large update primal-dual interior point methods for linear optimization. This complexity estimate improves results obtained in (X. Li and M. Zhang, Oper. Res. Lett. 43 (2015) 471-475; M.R. Peyghami and S.F. Hafshejani, Numer. Algo. 67 (2014) 33-48; M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545). Our comparative numerical experiments on some test problems consolidate and confirm our theoretical results according to which the new kernel function has promising applications compared to the kernel function given by (M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651-672). Moreover, the comparative numerical study that we have established favors our new kernel function better than other best trigonometric kernel functions (M. Bouafia, D. Benterki and A. Yassine, J. Optim. Theory Appl. 170 (2016) 528-545; M. Bouafia and A. Yassine, Optim. Eng. 21 (2020) 651-672).
引用
收藏
页码:731 / 750
页数:20
相关论文
共 50 条
  • [1] Complexity Analysis of Primal-Dual Interior-Point Methods for Linear Optimization Based on a New Parametric Kernel Function with a Trigonometric Barrier Term
    Cai, X. Z.
    Wang, G. Q.
    El Ghami, M.
    Yue, Y. J.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] COMPLEXITY ANALYSIS OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR SEMIDEFINITE OPTIMIZATION BASED ON A PARAMETRIC KERNEL FUNCTION WITH A TRIGONOMETRIC BARRIER TERM
    Wang, Guoqiang
    Wu, Zhongchen
    Zheng, Zhongtuan
    Cai, Xinzhong
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (02): : 101 - 113
  • [3] Primal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier term
    Behrouz Kheirfam
    Numerical Algorithms, 2012, 61 : 659 - 680
  • [4] Primal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier term
    Kheirfam, Behrouz
    NUMERICAL ALGORITHMS, 2012, 61 (04) : 659 - 680
  • [5] A PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION BASED ON A NEW PARAMETERIZED KERNEL FUNCTION
    Li, Mengmeng
    Zhang, Mingwang
    Huang, Zhengwei
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [6] Primal-dual interior-point method for linear optimization based on a kernel function with trigonometric growth term
    Fathi-Hafshejani, S.
    Mansouri, H.
    Peyghami, M. Reza
    Chen, S.
    OPTIMIZATION, 2018, 67 (10) : 1605 - 1630
  • [7] ANALYSIS OF COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT ALGORITHMS BASED ON A NEW KERNEL FUNCTION FOR LINEAR OPTIMIZATION
    Li, Siqi
    Qian, Weiyi
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 37 - 46
  • [8] A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function
    Mengmeng Li
    Mingwang Zhang
    Kun Huang
    Zhengwei Huang
    Optimization and Engineering, 2021, 22 : 293 - 319
  • [9] A new primal-dual interior-point method for semidefinite optimization based on a parameterized kernel function
    Li, Mengmeng
    Zhang, Mingwang
    Huang, Kun
    Huang, Zhengwei
    OPTIMIZATION AND ENGINEERING, 2021, 22 (01) : 293 - 319
  • [10] A Large-update Primal-dual Interior-point Algorithm for Convex Quadratic Optimization Based on a New Bi-parameterized Bi-hyperbolic Kernel Function
    Bouhenache, Youssra
    Chikouche, Wided
    Touil, Imene
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 992 - 1007