A Data-Driven Methodology for Pre-Flight Trajectory Prediction

被引:1
|
作者
Zazzaro, Gaetano [1 ]
Martone, Francesco [1 ]
Romano, Gianpaolo [1 ]
Vitale, Antonio [1 ]
Filippone, Edoardo [1 ]
机构
[1] CIRA Italian Aerosp Res Ctr, Via Maiorise Snc, Capua, CE, Italy
基金
欧盟地平线“2020”;
关键词
Data Driven; Data Mining; Machine Learning; Trajectory Prediction; Uncertainties; MODEL;
D O I
10.5220/0010985300003191
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a data-driven methodology, named P4T, for the trajectory prediction from long to short term before scheduled time of flight, developed within the framework of the PIU4TP project. The methodology is aimed to support the Network Manager in the air traffic flow and capacity management, allowing the optimization of flight distribution among sectors and flight routes, the anticipation of air traffic flow requests and the identification in advance of potential conflicts. The proposed approach applies machine learning and data mining techniques to perform data analysis and to correctly identify, from historical data, the aircraft expected behaviour, in terms of flight path selection. The main peculiarity of this approach is the exploitation of the uncertainties on current forecasts of some relevant mission and aircraft parameters to compute trajectory prediction outcomes enriched with associated probabilistic information. The preliminary validation of the methodology using simulated data highlighted very promising results.
引用
收藏
页码:188 / 197
页数:10
相关论文
共 50 条
  • [1] Data-Driven Method for Detecting Flight Trajectory Deviation Anomaly
    Guo, Ziyi
    Yin, Chang
    Zeng, Weili
    Tan, Xianghua
    Bao, Jie
    [J]. JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2022, 19 (12): : 799 - 810
  • [2] Methodology for Dynamic Data-Driven Online Flight Capability Estimation
    Lecerf, Marc
    Allaire, Douglas
    Willcox, Karen
    [J]. AIAA JOURNAL, 2015, 53 (10) : 3073 - 3087
  • [3] PRE-FLIGHT DIETS OF FLIGHT PERSONNEL
    POPOV, IG
    [J]. KOSMICHESKAYA BIOLOGIYA I AVIAKOSMICHESKAYA MEDITSINA, 1982, 16 (05): : 4 - 17
  • [4] A data-driven stacking fusion approach for pedestrian trajectory prediction
    Chen, Hao
    Zhang, Xi
    Yang, Wenyan
    Lin, Yiwei
    [J]. TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2023, 11 (01) : 548 - 571
  • [5] Bidirectional Data-Driven Trajectory Prediction for Intelligent Maritime Traffic
    Xiao, Ye
    Li, Xingchen
    Yao, Wen
    Chen, Jin
    Hu, Yupeng
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1773 - 1785
  • [6] A Data-Driven Model for Pedestrian Behavior Classification and Trajectory Prediction
    Papathanasopoulou, Vasileia
    Spyropoulou, Ioanna
    Perakis, Harris
    Gikas, Vassilis
    Andrikopoulou, Eleni
    [J]. IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 : 328 - 339
  • [7] New Reliability Studies of Data-Driven Aircraft Trajectory Prediction
    Hashemi, Seyed Mohammad
    Botez, Ruxandra Mihaela
    Grigorie, Teodor Lucian
    [J]. AEROSPACE, 2020, 7 (10) : 1 - 19
  • [8] Flight data-driven intelligent prediction for fuselage vibration of helicopter
    Deng, Jinghui
    Cheng, Qiyou
    Lu, Xing
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2023, 95 (07): : 1099 - 1107
  • [9] A trajectory data-driven approach for traffic risk prediction: incorporating variable interactions and pre-screening
    Wu, Dan
    Lee, Jaeyoung
    Li, Ye
    [J]. INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2024,
  • [10] Pre-flight calibration of isocam
    Pérault, M
    [J]. PROCEEDINGS OF THE CONFERENCE ON THE CALIBRATION LEGACY OF THE ISO MISSION, 2003, 481 : 45 - 50