Deformed geometric algebra and supersymmetric quantum mechanics

被引:4
|
作者
Henselder, Peter [1 ]
机构
[1] Univ Dortmund, Fachbereich Phys, D-44221 Dortmund, Germany
关键词
geometric algebra; supersymmetric quantum mechanics;
D O I
10.1016/j.physleta.2006.11.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deforming the algebraic structure of geometric algebra on the phase space with a Moyal product leads naturally to supersymmetric quantum mechanics in the star product formalism. The supersymmetric Hamiltonian emerges then from the classical one by the transition from commutative to noncommutative geometry on the phase space. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 380
页数:3
相关论文
共 50 条
  • [1] Deformed Clifford algebra and supersymmetric quantum mechanics on a phase space with applications in quantum optics
    Bugdayci, I.
    Vercin, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (38)
  • [2] Geometric phase in supersymmetric quantum mechanics
    Pedder, Chris
    Sonner, Julian
    Tongo, David
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [3] DEFORMED CONFORMAL AND SUPERSYMMETRIC QUANTUM-MECHANICS
    SPIRIDONOV, V
    MODERN PHYSICS LETTERS A, 1992, 7 (14) : 1241 - 1251
  • [4] Deformed supersymmetric quantum mechanics with spin variables
    Sergey Fedoruk
    Evgeny Ivanov
    Stepan Sidorov
    Journal of High Energy Physics, 2018
  • [5] Deformed supersymmetric quantum mechanics with spin variables
    Fedoruk, Sergey
    Ivanov, Evgeny
    Sidorov, Stepan
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [6] Supersymmetric Q-deformed Quantum Mechanics
    Traikia, M. H.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 330 - 333
  • [7] Deformed supersymmetric mechanics
    Ivanov, E.
    Sidorov, S.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (07)
  • [8] R-deformed Heisenberg algebra, quantum mechanics, and Virasoro algebra
    El Kinani, EH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (06) : 1457 - 1462
  • [9] R-Deformed Heisenberg Algebra, Quantum Mechanics, and Virasoro Algebra
    E. H. EL Kinani
    International Journal of Theoretical Physics, 2000, 39 (6) : 1457 - 1462
  • [10] Consistent deformed bosonic algebra in noncommutative quantum mechanics
    Zhang, Jian-Zu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (09): : 1393 - 1403