Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution

被引:19
|
作者
Jing, Yingying [1 ,2 ]
Shi, Jiancheng [1 ]
Wang, Tianxing [1 ]
Sussmann, Ralf [3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
[3] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, D-82467 Garmisch Partenkirchen, Germany
基金
中国国家自然科学基金;
关键词
CO2; GOSAT; SCIAMACHY; Fused data; CARBON-DIOXIDE; RETRIEVAL ALGORITHM; SCIAMACHY; SATELLITE; GOSAT; SPECTROMETER; VALIDATION; METHANE;
D O I
10.3390/atmos5040870
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Satellite measurements of the spatiotemporal distributions of atmospheric CO2 concentrations are a key component for better understanding global carbon cycle characteristics. Currently, several satellite instruments such as the Greenhouse gases Observing SATellite (GOSAT), SCanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY), and Orbiting Carbon Observatory-2 can be used to measure CO2 column-averaged dry air mole fractions. However, because of cloud effects, a single satellite can only provide limited CO2 data, resulting in significant uncertainty in the characterization of the spatiotemporal distribution of atmospheric CO2 concentrations. In this study, a new physical data fusion technique is proposed to combine the GOSAT and SCIAMACHY measurements. On the basis of the fused dataset, a gap-filling method developed by modeling the spatial correlation structures of CO2 concentrations is presented with the goal of generating global land CO2 distribution maps with high spatiotemporal resolution. The results show that, compared with the single satellite dataset (i.e., GOSAT or SCIAMACHY), the global spatial coverage of the fused dataset is significantly increased (reaching up to approximately 20%), and the temporal resolution is improved by two or three times. The spatial coverage and monthly variations of the generated global CO2 distributions are also investigated. Comparisons with ground-based Total Carbon Column Observing Network (TCCON) measurements reveal that CO2 distributions based on the gap-filling method show good agreement with TCCON records despite some biases. These results demonstrate that the fused dataset as well as the gap-filling method are rather effective to generate global CO2 distribution with high accuracies and high spatiotemporal resolution.
引用
收藏
页码:870 / 888
页数:19
相关论文
共 50 条
  • [1] High-spatiotemporal resolution mapping of spatiotemporally continuous atmospheric CO2 concentrations over the global continent
    Li, Jie
    Jia, Kun
    Wei, Xiangqin
    Xia, Mu
    Chen, Zhulin
    Yao, Yunjun
    Zhang, Xiaotong
    Jiang, Haiying
    Yuan, Bo
    Tao, Guofeng
    Zhao, Linlin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [2] The impact of spatiotemporal variability in atmospheric CO2 concentration on global terrestrial carbon fluxes
    Lee, Eunjee
    Zeng, Fan-Wei
    Koster, Randal D.
    Weir, Brad
    Ott, Lesley E.
    Poulter, Benjamin
    [J]. BIOGEOSCIENCES, 2018, 15 (18) : 5635 - 5652
  • [3] Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2
    Hammerling, Dorit M.
    Michalak, Anna M.
    Kawa, S. Randolph
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [4] Detection of Spatiotemporal Extreme Changes in Atmospheric CO2 Concentration Based on Satellite Observations
    He, Zhonghua
    Lei, Liping
    Welp, Lisa R.
    Zeng, Zhao-Cheng
    Bie, Nian
    Yang, Shaoyuan
    Liu, Liangyun
    [J]. REMOTE SENSING, 2018, 10 (06)
  • [5] Role of the ocean in controlling atmospheric CO2 concentration in the course of global glaciations
    Oka, Akira
    Tajika, Eiichi
    Abe-Ouchi, Ayako
    Kubota, Keiko
    [J]. CLIMATE DYNAMICS, 2011, 37 (9-10) : 1755 - 1770
  • [6] Forecasting global atmospheric CO2
    Agusti-Panareda, A.
    Massart, S.
    Chevallier, F.
    Boussetta, S.
    Balsamo, G.
    Beljaars, A.
    Ciais, P.
    Deutscher, N. M.
    Engelen, R.
    Jones, L.
    Kivi, R.
    Paris, J. -D.
    Peuch, V. -H.
    Sherlock, V.
    Vermeulen, A. T.
    Wennberg, P. O.
    Wunch, D.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (21) : 11959 - 11983
  • [7] Role of the ocean in controlling atmospheric CO2 concentration in the course of global glaciations
    Akira Oka
    Eiichi Tajika
    Ayako Abe-Ouchi
    Keiko Kubota
    [J]. Climate Dynamics, 2011, 37 : 1755 - 1770
  • [8] Global energy system to maintain atmospheric CO2 concentration at 550 ppm
    Yamaji K.
    Fujino J.
    Osada K.
    [J]. Environmental Economics and Policy Studies, 2000, 3 (2) : 159 - 171
  • [9] A trend of the CO2 concentration in tree rings and the atmospheric CO2
    Ageev B.G.
    Ponomarev Y.N.
    Sapozhnikova V.A.
    [J]. Atmospheric and Oceanic Optics, 2009, 22 (1) : 128 - 134
  • [10] The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation
    Zhongyi Sun
    Xiufeng Wang
    Haruhiko Yamamoto
    Hiroshi Tani
    Tangzhe Nie
    [J]. Climatic Change, 2020, 163 : 913 - 930