Distributed Parameterized Predictive Control for Multi-robot Curve Tracking

被引:3
|
作者
Pacheco, Gabriel, V [1 ]
Pimenta, Luciano C. A. [2 ]
Raffo, Guilherme, V [2 ]
机构
[1] Univ Fed Minas Gerais, Grad Program Elect Engn, Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, MG, Brazil
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Vector fields; distributed model predictive control; alternating direction method of multipliers; multi-robot systems; coordination; DECENTRALIZED CONTROLLERS;
D O I
10.1016/j.ifacol.2020.12.1054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a guidance strategy of multiple robots to converge and circulate a curve while avoiding collisions by using a distributed model predictive control. To build the model predictive control framework, systems guided by control laws with parameters are considered, which laws are embedded in the optimization problem. After that, the same problem is distributed using the Alternating Direction Method of Multipliers and nonlinear optimization. To solve the task of convergence and circulation of a closed path, a vector field based control law is embedded in the predictive control scheme. The control law results from the sum of two components, a convergence term and a circulation term, whereas each term has one proportional parameter associated. Numerical results present an application example, and the strategy effectiveness is discussed. Copyright (C) 2020 The Authors.
引用
收藏
页码:3144 / 3149
页数:6
相关论文
共 50 条
  • [1] Distributed multi-robot tracking control based on effective sectors in unknown environment
    Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
    Jiqiren, 2009, SUPPL. (81-85):
  • [2] Multi-Robot Formation and Tracking Control Method
    Wang, Dong
    Yu, Yang
    Wang, Wei
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 176 - 181
  • [3] LOCAL DISTRIBUTED CONTROL FOR MULTI-ROBOT NAVIGATION
    Terrones, A.
    Acuna, R.
    Certad, N.
    Fermin-Leon, L.
    Fernandez-Lopez, G.
    ADAPTIVE MOBILE ROBOTICS, 2012, : 797 - 804
  • [4] Tracking of Closed-Curve Trajectories for Multi-Robot Systems
    Sabattini, Lorenzo
    Secchi, Cristian
    Fantuzzi, Cesare
    Possamai, Daniel de Macedo
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 6089 - 6094
  • [5] Scalable Distributed Planning for Multi-Robot, Multi-Target Tracking
    Corah, Micah
    Michael, Nathan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 437 - 444
  • [6] Online Trajectory Generation With Distributed Model Predictive Control for Multi-Robot Motion Planning
    Luis, Carlos E.
    Vukosavljev, Marijan
    Schoellig, Angela P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 604 - 611
  • [7] Cooperative Multi-Robot Information Acquisition based on Distributed Robust Model Predictive Control
    Emoto, Shuhei
    Akkaya, Ilge
    Lee, Edward A.
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 874 - 879
  • [8] Distributed multi-robot task assignment and formation control
    Michael, Nathan
    Zavlanos, Michael M.
    Kumar, Vijay
    Pappas, George J.
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 128 - +
  • [9] Distributed control of compact formations for multi-robot swarms
    De Campos, Gabriel Rodrigues
    Dimarogonas, Dimos, V
    Seuret, Alexandre
    Johansson, Karl H.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (03) : 805 - 835
  • [10] A distributed approach to robust control of multi-robot systems
    Zhou, Yuan
    Hu, Hesuan
    Liu, Yang
    Lin, Shang-Wei
    Ding, Zuohua
    AUTOMATICA, 2018, 98 : 1 - 13