WEAK SOLUTIONS TO THE STATIONARY INCOMPRESSIBLE EULER EQUATIONS

被引:18
|
作者
Choffrut, A. [1 ,2 ]
Szekelyhidi, L., Jr. [3 ]
机构
[1] Univ Edinburgh, Maxwell Inst, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
基金
欧洲研究理事会;
关键词
stationary Euler equations; convex integration; CONVEX INTEGRATION; FLOWS;
D O I
10.1137/140957354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weak stationary solutions to the incompressible Euler equations and show that the analogue of the h-principle obtained by the second author in joint work with C. De Lellis for time-dependent weak solutions in L-infinity continues to hold. The key difference arises in dimension d = 2, where it turns out that the relaxation set is strictly smaller than what one obtains in the time-dependent case.
引用
收藏
页码:4060 / 4074
页数:15
相关论文
共 50 条