Equivalence of Palm measures for determinantal point processes governed by Bergman kernels

被引:4
|
作者
Bufetov, Alexander I. [1 ,2 ,3 ,4 ,5 ]
Fan, Shilei [1 ,6 ]
Qiu, Yanqi [7 ,8 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,Inst Math Marseille, 39 Rue F Joliot Curie, F-13453 Marseille, France
[2] RAS, Steklov Math Inst, Moscow, Russia
[3] Inst Informat Transmiss Problems, Moscow, Russia
[4] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[5] St Petersburg State Univ, Chebyshev Lab, St Petersburg, Russia
[6] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
[7] Univ Paul Sabatier, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
[8] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
基金
欧洲研究理事会;
关键词
Bergman kernel; Determinantal point process; Conditional measure; Deletion and insertion tolerance; Palm equivalence; Monotone coupling; ERGODIC DECOMPOSITION; FERMION;
D O I
10.1007/s00440-017-0803-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a determinantal point process induced by the reproducing kernel of the weighted Bergman space A2(U,.) over a domain U. Cd, we establish the mutual absolute continuity of reduced Palm measures of any order provided that the domain U contains a non-constant bounded holomorphic function. The result holds in all dimensions. The argument uses the H 8 (U)-module structure of A2(U,.). A corollary is the quasi-invariance of our determinantal point process under the natural action of the group of compactly supported diffeomorphisms of U.
引用
收藏
页码:31 / 69
页数:39
相关论文
共 50 条
  • [1] Equivalence of Palm measures for determinantal point processes governed by Bergman kernels
    Alexander I. Bufetov
    Shilei Fan
    Yanqi Qiu
    [J]. Probability Theory and Related Fields, 2018, 172 : 31 - 69
  • [2] A hierarchy of Palm measures for determinantal point processes with gamma kernels
    Bufetov, Alexander I.
    Olshanski, Grigori
    [J]. STUDIA MATHEMATICA, 2022, 267 (02) : 121 - 160
  • [3] Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions
    Bufetov, Alexander I.
    Qiu, Yanqi
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (06) : 551 - 555
  • [4] Rigidity of determinantal point processes on the unit disc with sub-Bergman kernels
    Yanqi Qiu
    Kai Wang
    [J]. Israel Journal of Mathematics, 2021, 245 : 389 - 408
  • [5] RIGIDITY OF DETERMINANTAL POINT PROCESSES ON THE UNIT DISC WITH SUB-BERGMAN KERNELS
    Qiu, Yanqi
    Wang, Kai
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 245 (01) : 389 - 408
  • [6] J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence
    Alexander I. Bufetov
    Yanqi Qiu
    [J]. Mathematische Annalen, 2018, 371 : 127 - 188
  • [7] J-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence
    Bufetov, Alexander I.
    Qiu, Yanqi
    [J]. MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 127 - 188
  • [8] Equivalent symmetric kernels of determinantal point processes
    Stevens, Marco
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (03)
  • [9] Conditional Measures of Determinantal Point Processes
    A. I. Bufetov
    [J]. Functional Analysis and Its Applications, 2020, 54 : 7 - 20
  • [10] Conditional Measures of Determinantal Point Processes
    Bufetov, A. I.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (01) : 7 - 20