Interacting T-S fuzzy particle filter algorithm for transfer probability matrix of adaptive online estimation model

被引:11
|
作者
Wang, Xiao-li [1 ,2 ]
Xie, Wei-xin [1 ,2 ]
Li, Liang-qun [1 ,2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Interacting T-S fuzzy model; Particle filtering; Fuzzy C-regression clustering; Modified strong tracking; Linear Matrix Inequalities; PERFORMANCE;
D O I
10.1016/j.dsp.2020.102944
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the problem of inaccurate or difficult to obtain statistical characteristics of non-Gaussian noise, an interacting T-S fuzzy modeling algorithm is proposed to incorporate spatial-temporal information into particle filtering. In the proposed method, feature information is characterized by multiple semantic fuzzy sets, and the model transition probabilities are estimated by using the fuzzy set transition probabilities, which can be derived by the closeness degrees between the fuzzy sets. Furthermore, the correntropy can capture the statistical information to solve the non-Gaussian noise, thus a kernel fuzzy C-regression means (FCRM) based on correntropy and spatial-temporal information is proposed to adaptively identify the premise parameters of T-S fuzzy model, and a modified strong tracking method is used to estimate the consequence parameters. By using the proposed interacting T-S fuzzy model, an efficient importance density function is constructed for the particle filtering algorithm. Finally, the simulation results show that the tracking performance of the proposed algorithm is effective in processing non-Gaussian noise. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Interacting T-S Fuzzy Model Particle Filter
    Li, Liang-qun
    Wang, Xiao-li
    Xie, Wei-xin
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [2] An adaptive approach for estimation of transition probability matrix in the interacting multiple model filter
    Cosme, Luciana Balieiro
    Silveira Vasconcelos D'Angelo, Marcos Flavio
    Caminhas, Walmir Matos
    Camargos, Murilo Osorio
    Palhares, Reinaldo Martinez
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 155 - 166
  • [3] T-S model based indirect adaptive fuzzy control using online parameter estimation
    Park, CW
    Cho, YW
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (06): : 2293 - 2302
  • [4] Interacting T-S fuzzy semantic model estimation for maneuvering target tracking
    Li, Liang-Qun
    Zhan, Xi-yang
    Xie, Wei-Xin
    Liu, Zong-Xiang
    NEUROCOMPUTING, 2021, 421 : 84 - 96
  • [5] Interacting T-S fuzzy semantic model estimation for maneuvering target tracking
    Li L.-Q.
    Zhan X.-Y.
    Xie W.-X.
    Liu Z.-X.
    Neurocomputing, 2021, 421 : 84 - 96
  • [6] Adaptive interacting particle system algorithm for aircraft conflict probability estimation
    Jacquemart, Damien
    Morio, Jerome
    AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 55 : 431 - 438
  • [7] Particle Swarm Optimization of T-S Fuzzy Model
    Ma, Ming
    Zhang, Li-biao
    Sun, Yan
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2010, VOL 2, 2010, 82 : 447 - +
  • [8] Adaptive model set interacting multiple model auxiliary particle filter algorithm
    Department of Automatic Control, School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    Beijing Ligong Daxue Xuebao, 2008, 12 (1070-1073):
  • [9] Adaptive Interacting Multiple Model Unscented Particle Filter Tracking Algorithm
    Liu Hongjiang
    DIGITAL MANUFACTURING & AUTOMATION III, PTS 1 AND 2, 2012, 190-191 : 906 - 910
  • [10] Adaptive Fuzzy of MEMS Gyroscope Using T-S Fuzzy Model
    Fei Juntao
    Wang Shitao
    Mia Mingang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 3104 - 3109