Cockcroft-Walton Generator: An Effective Voltage Multiplier for Power Supplies of Square Pulses Driving DBD Plasmas

被引:2
|
作者
Giotis, Konstantinos [1 ]
Svarnas, Panagiotis [1 ]
Petrou, Konstantinos [1 ]
Poupouzas, Michael [1 ,2 ]
Athanasopoulos, Dimitrios K. [1 ]
机构
[1] Univ Patras, Dept Elect & Comp Engn, High Voltage Lab, Patras 26504, Greece
[2] Luxembourg Inst Sci & Technol LIST, L-4362 Esch Sur Alzette, Luxembourg
关键词
Optical switches; Probes; High-voltage techniques; Resistors; Power supplies; Voltage; Plasmas; Cockcroft-Walton generator (CWG); cold plasmas; dielectric barrier discharges (DBDs); MOSFET; pulsed high voltage; MARX GENERATOR;
D O I
10.1109/TPS.2022.3176132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This report gives prominence to the importance of the traditional Cockcroft-Walton voltage multiplier to the design of pulsed power supplies for dielectric barrier discharge (DBD) applications. Following an inventive concept, a simple Cockcroft-Walton generator is combined with a MOSFET-based switch (in either ``push'' or ``pull'' mode). Thus, the to-be-chopped stabilized dc high voltage is produced by a compact, transformer-less, modular unit, having high flexibility in terms of engineering. This approach leads to well-defined, square, high-voltage pulses of variable amplitude, frequency, and duty cycle. Design, implementation, and proof test of such a prototype are here demonstrated. The prototype yields square pulses as high as 10 kV (plateau value), as narrow as 350 ns (variable pulsewidth up to millisecond, depending on the frequency), rising or falling time close to 20 ns, pulse repetition rates up to 4 kHz, and output mean power up to 150 W. The functionality of the system is demonstrated by driving coaxial, ambient air DBDs of variable lengths, while principal electrical and optical parameters are recorded. Peak power values higher than 70 kW are measured on the DBD side, while the voltage multiplier power efficiency factor remains close to 95%.
引用
收藏
页码:2185 / 2194
页数:10
相关论文
共 50 条
  • [1] A Mini-Marx Generator Powered by a Cockcroft-Walton Voltage Multiplier
    Aranganadin, Kaviya
    Zhang, Zhaofeng
    Lin, Yen-Cheng
    Chang, Po-Yu
    Hsu, Hua-Yi
    Lin, Ming-Chieh
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, : 3393 - 3399
  • [2] HIGH POWER COCKCROFT-WALTON GENERATOR
    REINHOLD, G
    TRUEMPY, K
    GLEYVOD, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (02): : 226 - &
  • [3] HIGH POWER COCKCROFT-WALTON GENERATOR
    REINHOLD, G
    TRUMPY, K
    GLEYVOD, R
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1971, NS18 (03) : 92 - &
  • [4] A NEW MODIFICATION OF COCKCROFT-WALTON VOLTAGE MULTIPLIER CIRCUIT
    GOEBEL, W
    NUCLEAR INSTRUMENTS & METHODS, 1969, 67 (02): : 331 - &
  • [5] Design and implementation of MEMS Cockcroft-Walton voltage multiplier
    Li, L.
    Uttamchandani, D.
    ELECTRONICS LETTERS, 2009, 45 (01) : 36 - U11
  • [6] Ripple harmonics in symmetrical Cockcroft-Walton voltage multiplier
    Feng, Renjian
    Zhang, Dan
    Zhang, Haibo
    He Jishu/Nuclear Techniques, 2000, 23 (10): : 683 - 688
  • [7] Integrated System of a Mini-Marx Generator Charged by a Cockcroft-Walton Voltage Multiplier
    Zhang, Zhaofeng
    Aranganadin, Kaviya
    Hsu, Hua-Yi
    Chang, Po-Yu
    Lin, Ming-Chieh
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON VACUUM ELECTRONICS (IVEC 2020), 2020, : 13 - 14
  • [8] Power Conversion Using Analytical Model of Cockcroft-Walton Voltage Multiplier Rectenna
    Ali, Esraa Mousa
    Yahaya, Nor Zaihar
    Saraereh, Omar Aqeel
    Al Assaf, Anwar Hamdan
    Alqasem, Bilal Hasan
    Iqbal, Shahid
    Ibrahim, Oladimeji
    Patel, Amit, V
    ELECTRONICS, 2021, 10 (08)
  • [9] SMALL-SIGNAL MODEL OF THE COCKCROFT-WALTON VOLTAGE MULTIPLIER
    LAMANTIA, A
    MARANESI, PG
    RADRIZZANI, L
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 1994, 9 (01) : 18 - 25
  • [10] A Hybrid Cockcroft-Walton/Dickson Multiplier for High Voltage Generation
    Park, Sanghyeon
    Yang, Jun
    Rivas-Davila, Juan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (03) : 2714 - 2723