A Flexible FPGA-Based Inference Architecture for Pruned Deep Neural Networks

被引:7
|
作者
Posewsky, Thorbjoern [1 ]
Ziener, Daniel [2 ]
机构
[1] Ibeo Automot Syst GmbH, Hamburg, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Erlangen, Germany
来源
关键词
D O I
10.1007/978-3-319-77610-1_23
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an architecture for embedded FPGA-based deep neural network inference which is able to handle pruned weight matrices. Pruning of weights and even entire neurons reduces the amount of data and calculations significantly, thus improving enormously the efficiency and performance of the neural network inference in embedded devices. By using an HLS approach, the architecture is easily extendable and highly configurable with a free choice of parameters like the number of MAC units or the used activation function. For large neural networks, our approach competes with at least comparable performance as state-of-the-art x86-based software implementations while only using 10% of the energy.
引用
收藏
页码:311 / 323
页数:13
相关论文
共 50 条
  • [1] Flexible Deep-pipelined FPGA-based Accelerator for Spiking Neural Networks
    Lopez-Asuncion, Samuel
    Ituero Herrero, Pablo
    2023 38TH CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS, DCIS, 2023,
  • [2] An Efficient FPGA-Based Architecture for Convolutional Neural Networks
    Hwang, Wen-Jyi
    Jhang, Yun-Jie
    Tai, Tsung-Ming
    2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 582 - 588
  • [3] Throughput optimizations for FPGA-based deep neural network inference
    Posewsky, Thorbjoern
    Ziener, Daniel
    MICROPROCESSORS AND MICROSYSTEMS, 2018, 60 : 151 - 161
  • [4] Implementation of FPGA-based Accelerator for Deep Neural Networks
    Tsai, Tsung-Han
    Ho, Yuan-Chen
    Sheu, Ming-Hwa
    2019 IEEE 22ND INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2019,
  • [5] FPGA based Flexible Implementation of Light Weight Inference on Deep Convolutional Neural Networks
    Dawwd, Shefa
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2024, 21 (03) : 408 - 417
  • [6] Efficient Neuron Architecture for FPGA-based Spiking Neural Networks
    Wan, Lei
    Luo, Yuling
    Song, Shuxiang
    Harkin, Jim
    Liu, Junxiu
    2016 27TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2016,
  • [7] Energy-Efficient Architecture for FPGA-based Deep Convolutional Neural Networks with Binary Weights
    Duan, Yunzhi
    Li, Shuai
    Zhang, Ruipeng
    Wang, Qi
    Chen, Jienan
    Sobelman, Gerald E.
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [8] An FPGA-based Accelerator Implementation for Deep Convolutional Neural Networks
    Zhou, Yongmei
    Jiang, Jingfei
    PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 829 - 832
  • [9] A Review of FPGA-Based Custom Computing Architecture for Convolutional Neural Network Inference
    PENG Xiyuan
    YU Jinxiang
    YAO Bowen
    LIU Liansheng
    PENG Yu
    Chinese Journal of Electronics, 2021, 30 (01) : 1 - 17
  • [10] A Review of FPGA-Based Custom Computing Architecture for Convolutional Neural Network Inference
    Peng Xiyuan
    Yu Jinxiang
    Yao Bowen
    Liu Liansheng
    Peng Yu
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (01) : 1 - 17