Statistical properties of the energy in time-dependent homogeneous power law potentials

被引:3
|
作者
Andresas, Dimitris [1 ]
Robnik, Marko [1 ]
机构
[1] Univ Maribor, CAMTP, SI-2000 Maribor, Slovenia
关键词
time-dependent hamilton systems; homogeneous power law potentials; nonlinear WKB method; OSCILLATOR; EVOLUTION;
D O I
10.1088/1751-8113/47/35/355102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study classical 1D Hamilton systems with a homogeneous power law potential and their statistical behavior, assuming a microcanonical distribution of the initial conditions and describing its change under a monotonically increasing time-dependent function a(t) (the prefactor of the potential). Using the nonlinear Wentzel-Kramers-Brillouin-like method of Papamikos and Robnik 2012 J. Phys. A: Math. Theor. 44 315102 and following a previous work by Papamikos and Robnik 2011 J. Phys. A: Math. Theor. 45 015206, we specifically analyze the mean energy, the variance and the adiabatic invariant (action) of the systems for large time t -> infinity and we show that the mean energy and variance increase as powers of a(t), while the action oscillates and finally remains constant. By means of a number of detailed case studies, we show that the theoretical prediction is excellent, which demonstrates the usefulness of the method in such applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Airy pulse shaping using time-dependent power-law potentials
    Han, Tianwen
    Chen, Hao
    Qin, Chengzhi
    Li, Wenwan
    Wang, Bing
    Lu, Peixiang
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [2] Approximating Time-Dependent Quantum Statistical Properties
    Bonella, Sara
    Ciccotti, Giovanni
    ENTROPY, 2014, 16 (01) : 86 - 109
  • [3] TIME-DEPENDENT STATISTICAL PROPERTIES OF LASER RADIATION
    ARECCHI, FT
    DEGIORGIO, V
    QUERZOLA, B
    PHYSICAL REVIEW LETTERS, 1967, 19 (20) : 1168 - +
  • [4] Seismic wave properties in time-dependent porosity homogeneous media
    Quiroga-Goode, G.
    Padilla-Hernandez, R.
    Jimenez-Hernandez, S.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 170 (03) : 1227 - 1242
  • [5] STATISTICAL FORMULATION OF NONSTATIONARY HOMOGENEOUS TURBULENCE, BASED ON TIME-DEPENDENT TURBULENT VISCOSITY
    YOSHIZAWA, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (01) : 274 - 279
  • [6] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015
  • [7] SCATTERING PROPERTIES OF WAVE-EQUATIONS WITH TIME-DEPENDENT POTENTIALS
    MENZALA, GP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (4-5): : 457 - 475
  • [8] Time-dependent power-law nanofluid with entropy generation
    Ahmad, Salman
    Ullah, Habib
    Hayat, T.
    Alhodaly, Mohammed Sh
    PHYSICA SCRIPTA, 2021, 96 (02)
  • [9] RECORDING METHOD FOR TIME-DEPENDENT STATISTICAL PROPERTIES OF STOCHASTICAL PROCESSES
    KOLOSSA, I
    TECHNISCHES MESSEN, 1980, 47 (7-8): : 265 - 266