ASYMPTOTICS FOR THE DISCRETE-TIME AVERAGE OF THE GEOMETRIC BROWNIAN MOTION AND ASIAN OPTIONS

被引:8
|
作者
Pirjol, Dan [1 ]
Zhu, Lingjiong [2 ]
机构
[1] JP Morgan, New York, NY 10172 USA
[2] Florida State Univ, Dept Math, 1017 Acad Way, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Asian option; central limit theorem; Berry-Esseen bound; large deviations; IMPLIED VOLATILITY; PRICE; MATURITY; MODEL; FORMULAS;
D O I
10.1017/apr.2017.9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The time average of geometric Brownian motion plays a crucial role in the pricing of Asian options in mathematical finance. In this paper we consider the asymptotics of the discrete-time average of a geometric Brownian motion sampled on uniformly spaced times in the limit of a very large number of averaging time steps. We derive almost sure limit, fluctuations, large deviations, and also the asymptotics of the moment generating function of the average. Based on these results, we derive the asymptotics for the price of Asian options with discrete-time averaging in the Black-Scholes model, with both fixed and floating strike.
引用
收藏
页码:446 / 480
页数:35
相关论文
共 50 条
  • [1] Discrete sums of geometric Brownian motions, annuities and Asian options
    Pirjol, Dan
    Zhu, Lingjiong
    INSURANCE MATHEMATICS & ECONOMICS, 2016, 70 : 19 - 37
  • [2] Bessel processes, the integral of geometric Brownian motion, and Asian options
    Carr, P
    Schröder, M
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2003, 48 (03) : 400 - 425
  • [3] Characterization of discrete-time fractional Brownian motion
    Gupta, Anubha
    Joshi, ShivDutt
    2006 ANNUAL IEEE INDIA CONFERENCE, 2006, : 1 - +
  • [4] Asymptotics for the Laplace transform of the time integral of the geometric Brownian motion
    Pirjol, Dan
    Zhu, Lingjiong
    OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 346 - 352
  • [5] The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion
    Shokrollahi, Foad
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 716 - 724
  • [6] Option pricing of geometric Asian options in a subdiffusive Brownian motion regime
    Guo, Zhidong
    Wang, Xianhong
    Zhang, Yunliang
    AIMS MATHEMATICS, 2020, 5 (05): : 5332 - 5343
  • [7] Pricing geometric Asian rainbow options under fractional Brownian motion
    Wang, Lu
    Zhang, Rong
    Yang, Lin
    Su, Yang
    Ma, Feng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 8 - 16
  • [8] Occupation times of discrete-time fractional Brownian motion
    Denker, Manfred
    Zheng, Xiaofei
    STOCHASTICS AND DYNAMICS, 2019, 19 (01)
  • [9] Pricing geometric Asian rainbow options under the mixed fractional Brownian motion
    Ahmadian, D.
    Ballestra, L., V
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 555
  • [10] Pricing geometric average Asian options in the mixed sub-fractional Brownian motion environment with Vasicek interest rate model
    Wang, Xinyi
    Wang, Chunyu
    AIMS MATHEMATICS, 2024, 9 (10): : 26579 - 26601