Instrumental Variable Models for Discrete Outcomes

被引:43
|
作者
Chesher, Andrew [1 ]
机构
[1] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
Partial identification; nonparametric methods; nonadditive models; discrete distributions; ordered choice; endogeneity; instrumental variables; structural quantile functions; incomplete models; COUNT DATA MODELS; IDENTIFICATION; ENDOGENEITY; EQUATIONS;
D O I
10.3982/ECTA7315
中图分类号
F [经济];
学科分类号
02 ;
摘要
Single equation instrumental variable models for discrete outcomes are shown to be set identifying, not point identifying, for the structural functions that deliver the values of the discrete outcome. Bounds on identified sets are derived for a general nonparametric model and sharp set identification is demonstrated in the binary outcome case. Point identification is typically not achieved by imposing parametric restrictions. The extent of an identified set varies with the strength and support of instruments, and typically shrinks as the support of a discrete outcome grows. The paper extends the analysis of structural quantile functions with endogenous arguments to cases in which there are discrete outcomes.
引用
收藏
页码:575 / 601
页数:27
相关论文
共 50 条
  • [1] What Do Instrumental Variable Models Deliver with Discrete Dependent Variables?
    Chesher, Andrew
    Rosen, Adam M.
    [J]. AMERICAN ECONOMIC REVIEW, 2013, 103 (03): : 557 - 562
  • [2] Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes
    Burgess, Stephen
    Granell, Raquel
    Palmer, Tom M.
    Sterne, Jonathan A. C.
    Didelez, Vanessa
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 180 (01) : 111 - 119
  • [3] Bayesian latent variable models for mixed discrete outcomes
    Dunson, DB
    Herring, AH
    [J]. BIOSTATISTICS, 2005, 6 (01) : 11 - 25
  • [4] Latent variable models for mixed discrete and continuous outcomes
    Sammel, MD
    Ryan, LM
    Legler, JM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (03): : 667 - 678
  • [5] Generalized Instrumental Variable Models
    Chesher, Andrew
    Rosen, Adam M.
    [J]. ECONOMETRICA, 2017, 85 (03) : 959 - 989
  • [6] BIVARIATE LATENT VARIABLE MODELS FOR CLUSTERED DISCRETE AND CONTINUOUS OUTCOMES
    CATALANO, PJ
    RYAN, LM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) : 651 - 658
  • [7] An instrumental variable model of multiple discrete choice
    Chesher, Andrew
    Rosen, Adam M.
    Smolinski, Konrad
    [J]. QUANTITATIVE ECONOMICS, 2013, 4 (02) : 157 - 196
  • [8] Instrumental Variable Estimators for Binary Outcomes
    Clarke, Paul S.
    Windmeijer, Frank
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1638 - 1652
  • [9] INSTRUMENTAL VARIABLE APPROACH IN OUTCOMES RESEARCH
    Baser, O.
    Dysinger, A.
    [J]. VALUE IN HEALTH, 2009, 12 (03) : A27 - A27
  • [10] An Instrumental Variable Approach to Dynamic Models
    Berry, Steven T.
    Compiani, Giovanni
    [J]. REVIEW OF ECONOMIC STUDIES, 2023, 90 (04): : 1724 - 1758