End-to-end privacy preserving deep learning on multi-institutional medical imaging

被引:176
|
作者
Kaissis, Georgios [1 ,2 ,3 ,4 ]
Ziller, Alexander [1 ,2 ,4 ]
Passerat-Palmbach, Jonathan [3 ,4 ,5 ]
Ryffel, Theo [4 ,6 ,7 ]
Usynin, Dmitrii [1 ,2 ,3 ,4 ]
Trask, Andrew [4 ,8 ]
Lima, Ionesio, Jr. [4 ,9 ]
Mancuso, Jason [4 ,10 ]
Jungmann, Friederike [1 ]
Steinborn, Marc-Matthias [11 ]
Saleh, Andreas [11 ]
Makowski, Marcus [1 ]
Rueckert, Daniel [2 ,3 ]
Braren, Rickmer [1 ,12 ]
机构
[1] Tech Univ Munich, Inst Diagnost & Intervent Radiol, Munich, Germany
[2] Tech Univ Munich, Artificial Intelligence Med & Healthcare, Munich, Germany
[3] Imperial Coll London, Dept Comp, London, England
[4] OpenMined, New York, NY USA
[5] ConsenSys Hlth, New York, NY USA
[6] PSL Univ, ENS, INRIA, Paris, France
[7] Arkhn, Paris, France
[8] Univ Oxford, Ctr Governance AI, Oxford, England
[9] Univ Fed Campina Grande, Campina Grande, Paraiba, Brazil
[10] Cape Privacy, New York, NY USA
[11] Munchen Klin Schwabing, Munich, Germany
[12] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
基金
英国科研创新办公室;
关键词
DISEASES; SECURE;
D O I
10.1038/s42256-021-00337-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using large, multi-national datasets for high-performance medical imaging AI systems requires innovation in privacy-preserving machine learning so models can train on sensitive data without requiring data transfer. Here we present PriMIA (Privacy-preserving Medical Image Analysis), a free, open-source software framework for differentially private, securely aggregated federated learning and encrypted inference on medical imaging data. We test PriMIA using a real-life case study in which an expert-level deep convolutional neural network classifies paediatric chest X-rays; the resulting model's classification performance is on par with locally, non-securely trained models. We theoretically and empirically evaluate our framework's performance and privacy guarantees, and demonstrate that the protections provided prevent the reconstruction of usable data by a gradient-based model inversion attack. Finally, we successfully employ the trained model in an end-to-end encrypted remote inference scenario using secure multi-party computation to prevent the disclosure of the data and the model. Gaining access to medical data to train AI applications can present problems due to patient privacy or proprietary interests. A way forward can be privacy-preserving federated learning schemes. Kaissis, Ziller and colleagues demonstrate here their open source framework for privacy-preserving medical image analysis in a remote inference scenario.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 50 条
  • [1] End-to-end privacy preserving deep learning on multi-institutional medical imaging
    Georgios Kaissis
    Alexander Ziller
    Jonathan Passerat-Palmbach
    Théo Ryffel
    Dmitrii Usynin
    Andrew Trask
    Ionésio Lima
    Jason Mancuso
    Friederike Jungmann
    Marc-Matthias Steinborn
    Andreas Saleh
    Marcus Makowski
    Daniel Rueckert
    Rickmer Braren
    [J]. Nature Machine Intelligence, 2021, 3 : 473 - 484
  • [2] AHEC: End-to-end Compiler Framework for Privacy-preserving Machine Learning Acceleration
    Chen, Huili
    Cammarota, Rosario
    Valencia, Felipe
    Regazzoni, Francesco
    Koushanfar, Farinaz
    [J]. PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [3] Fast ultrasonic imaging using end-to-end deep learning
    Pilikos, Georgios
    Horchens, Lars
    Batenburg, Kees Joost
    van Leeuwen, Tristan
    Lucka, Felix
    [J]. PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2020,
  • [4] A Multi-Institutional End-To-End Dosimetry Mail Audit for Orthovoltage Small Animal Irradiators
    Gronberg, M.
    Tailor, R.
    Smith, S.
    Kry, S.
    Followill, D.
    Stojadinovic, S.
    Niedzielski, J.
    Lindsay, P.
    Krishnan, S.
    Aguirre, J.
    Fujimoto, T.
    Taniguchi, C.
    Howell, R.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E448 - E448
  • [5] Collaborative Privacy-preserving Approaches for Distributed Deep Learning Using Multi-Institutional Data
    Gupta, Sharut
    Kumar, Sourav
    Chang, Ken
    Lu, Charles
    Singh, Praveer
    Kalpathy-Cramer, Jayashree
    [J]. RADIOGRAPHICS, 2023, 43 (04)
  • [6] Privacy-Preserving End-to-End Spoken Language Understanding
    Wang, Yinggui
    Huang, Wei
    Yang, Le
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5224 - 5232
  • [7] Towards Dynamic End-to-End Privacy Preserving Data Classification
    Talbi, Rania
    Bouchenak, Sara
    Chen, Lydia Y.
    [J]. 2018 48TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS (DSN-W), 2018, : 73 - 74
  • [8] End-to-End Secure and Privacy Preserving Mobile Chat Application
    Akram, Raja Naeem
    Ko, Ryan K. L.
    [J]. INFORMATION SECURITY THEORY AND PRACTICE: SECURING THE INTERNET OF THINGS, 2014, 8501 : 124 - 139
  • [9] Accounting for data variability in multi-institutional distributed deep learning for medical imaging
    Balachandar, Niranjan
    Chang, Ken
    Kalpathy-Cramer, Jayashree
    Rubin, Daniel L.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (05) : 700 - 708
  • [10] An End-to-End Privacy Preserving Design of a Map-Reduce Framework
    Kumar, N. V. Narendra
    Shyamasundar, R. K.
    [J]. PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, : 1469 - 1476