EMBEDDING THEOREMS AND BOUNDARY-VALUE PROBLEMS FOR CUSP DOMAINS

被引:0
|
作者
Gol'dshtein, V. [1 ]
Vasiltchik, M. Ju. [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Novosibirsk Tech Univ, Dept Math, Novosibirsk, Russia
基金
以色列科学基金会; 俄罗斯基础研究基金会;
关键词
OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Robin boundary-value problem for bounded domains with isolated singularities. Because trace spaces of space W-2(1)(D) on boundaries of such domains are weighted Sobolev spaces L-2,L-xi(partial derivative D), existence and uniqueness of corresponding Robin boundary-value problems depends on properties of embedding operators I-perpendicular to : W-2(1)(D) -> L-2 (D) and I-2 : W-2(1)(D) -> L-2,L-xi (partial derivative D) i.e. oil types of singularities. We obtain an exact description of weights for bounded domains with 'outside peaks' oil its boundaries. This result, allows us to formulate correctly the corresponding Robin boundary-value problems for elliptic operators. Using compactness of embedding operators I-1, I-2, we prove also that these Robin boundary-value problems with the spectral parameter are of Fredholm type.
引用
收藏
页码:1963 / 1979
页数:17
相关论文
共 50 条