MnO2 nanosheets decorated porous active carbon derived from wheat bran for high-performance asymmetric supercapacitor

被引:32
|
作者
Kong, Shuying [1 ]
Jin, Binbin [1 ]
Quan, Xin [1 ]
Zhang, Guoqing [1 ]
Guo, Xiaogang [1 ]
Zhu, Qiuyin [1 ]
Yang, Fan [2 ]
Cheng, Kui [3 ,4 ]
Wang, Guiling [3 ]
Cao, Dianxue [3 ]
机构
[1] Yangtze Normal Univ, Chongqing Key Lab Inorgan Special Funct Mat, Coll Chem & Chem Engn, Chongqing 408000, Peoples R China
[2] Northeast Agr Univ, Coll Water Resources & Civil Engn, Harbin 150030, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Minist Educ, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Heilongjiang, Peoples R China
[4] Northeast Agr Univ, Coll Engn, Harbin 150030, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten salt; Porous carbon; MnO2; Asymmetric supercapacitor; Energy density; ELECTRODE MATERIAL; GRAPHENE NANOSHEETS; POSITIVE ELECTRODE; ASSISTED SYNTHESIS; FACILE SYNTHESIS; TERNARY HYBRIDS; NITROGEN; NANOHYBRID; REDUCTION; BIOMASS;
D O I
10.1016/j.jelechem.2019.113412
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
MnO2 is regarded as an ideal material of supercapacitor since its low-cost, environment friendly and high specific capacitance but hindered by its poor electrical conductivity. Developing a composite electrode that combines nano-structure MnO2 with a conductive skeleton such as carbon materials could make up for the shortcomings. Here, porous activated carbon (PAC) is synthesized by using low-cost wheat bran as biomass carbon precursor and a mixture of NaCl/ZnCl2 as combined solvent-porogen. The resultant PAC sample presents a hierarchical porous structure and large specific surface area up to 1058 m(2) g(-1). Afterwards, MnO2 nanosheets decorated PAC (MnO2@PAC) is prepared via an in-situ hydrothermal deposition. It is a key finding that the ion/electron transfer kinetics of MnO2@PAC could be effectively improved by the addition of hierarchical porous carbon. Thus, the MnO2@PAC electrode displays a high specific capacitance (258 F g(-1) at 1 A g(-1)) and superior rate performance (82.8% capacitance retention with the current density ranging from 1 A g(-1) to 20 A g(-1)). Furthermore, an asymmetric supercapacitor is assembled by employing the MnO2@PAC as the positive electrode and PAC as negative electrode, which exhibits a high energy density of 32.6 Wh kg(-1) and as well as 93.6% capacity retention at over 10,000 charge/discharge cydes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bubble Carbon-nanofibers Decorated with MnO2 Nanosheets as High-Performance Supercapacitor Electrode
    Zhao, Haitao
    Han, Weihua
    Lan, Wei
    Zhou, Jinyuan
    Zhang, Zemin
    Fu, Wenbin
    Xie, Erqing
    ELECTROCHIMICA ACTA, 2016, 222 : 1931 - 1939
  • [2] MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor
    Wang, Jiahao
    Guo, Xihong
    Cui, Rongli
    Huang, Huan
    Liu, Bing
    Li, Ying
    Wang, Dan
    Zhao, Dangui
    Dong, Jinquan
    Li, Shucun
    Sun, Baoyun
    ACS APPLIED NANO MATERIALS, 2020, 3 (11) : 11152 - 11159
  • [3] Interconnected δ-MnO2 nanosheets anchored on porous carbon derived from reed residue waste as high-performance electrode for supercapacitor
    Li, Peipei
    Wu, Ju
    Tang, Lei
    Liu, Honglai
    Xu, Yunhui
    Zhang, Dazhi
    IONICS, 2023, 29 (09) : 3629 - 3639
  • [4] Interconnected δ–MnO2 nanosheets anchored on porous carbon derived from reed residue waste as high-performance electrode for supercapacitor
    Peipei Li
    Ju Wu
    Lei Tang
    Honglai Liu
    Yunhui Xu
    Dazhi Zhang
    Ionics, 2023, 29 : 3629 - 3639
  • [5] Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance
    Botong Zhou
    Yanwei Sui
    Jiqiu Qi
    Yezeng He
    Qingkun Meng
    Fuxiang Wei
    Yaojian Ren
    Xuping Zhang
    Journal of Electronic Materials, 2019, 48 : 3026 - 3035
  • [6] Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance
    Zhou, Botong
    Sui, Yanwei
    Qi, Jiqiu
    He, Yezeng
    Meng, Qingkun
    Wei, Fuxiang
    Ren, Yaojian
    Zhang, Xuping
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (05) : 3026 - 3035
  • [7] Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes
    Zhu, Shijin
    Cen, Wanglai
    Hao, Longlong
    Ma, Junjun
    Yu, Liang
    Zheng, Huaili
    Zhang, Yuxin
    MATERIALS LETTERS, 2014, 135 : 11 - 14
  • [8] Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance
    Xia, Ao
    Yu, Wanru
    Yi, Jue
    Tan, Guoqiang
    Ren, Huijun
    Liu, Chun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 839 : 25 - 31
  • [9] MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes
    Li, Huailong
    Jiang, Lixue
    Cheng, Qilin
    He, Ying
    Pavlinek, Vladimir
    Saha, Petr
    Li, Chunzhong
    ELECTROCHIMICA ACTA, 2015, 164 : 252 - 259
  • [10] MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes
    Liu, Yu
    Cai, Xiaoyu
    Luo, Bifu
    Yan, Ming
    Jiang, Jinhui
    Shi, Weidong
    CARBON, 2016, 107 : 426 - 432