Improved electrochemical performance of LiNi0.4Ti0.1Mn1.5O4 as cathode of lithium ion battery by carbon-coating

被引:17
|
作者
Jin, Yan-Zhang [1 ]
Lv, Yan-Zhuo [1 ]
Xue, Yuan [2 ]
Wu, Jin [3 ]
Zhang, Xiao-Gang [3 ]
Wang, Zhen-Bo [2 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
[3] Xian Huijie Ind Co Ltd, Xian 710116, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金; 中国博士后科学基金;
关键词
COATED LINI0.5MN1.5O4 SPINEL; LIFEPO4/C COMPOSITE; CYCLIC PERFORMANCE; STABILITY; X=0.5;
D O I
10.1039/c4ra07921c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effects of Ti substitution for Ni, carbon coating on the structure and electrochemical properties of LiMn1.5Ni0.5O4 are studied. LiMn1.5Ni0.5O4, LiNi0.4Ti0.1Mn1.5O4 and carbon-coated LiNi0.4Ti0.1Mn1.5O4 cathode materials have been synthesized by a solid-state reaction using industrial raw materials in bulk scale. X-ray diffraction clearly shows that LiMn1.5Ni0.5O4 has higher crystallinity after Ti doping. Scanning electron microscopy clearly exhibits that Ti doping does not change the basic spin& structure, as well as coated carbon layer covers the surfaces of the LiNi0.4Ti0.1Mn1.5O4 particles. In addition, chargedischarge tests indicate that LiNi0.4Ti0.1Mn1.5O4 sample has higher discharge capacities at the rates of 0.5, 1 and 3 C at 25 degrees C. It should be noted that carbon-coated LiNi0.4Ti0.1Mn1.5O4 shows higher discharge capacities at the rates of 5, 7 and 10 C at 25 degrees C as well as various rates for 55 degrees C. Cyclic performances developed at 25 and 55 degrees C demonstrate that the capacity retention is remarkably improved compared to the two uncoated samples. The influence of the Ti-doping and carbon-coating on the coulombic efficiency at high temperature (55 degrees C) has also been investigated. Among the various samples investigated, surface modification with carbon gives an improved coulombic efficiency. The remarkably enhanced electrochemical properties of the carbon-coated sample may be because of the suppression of the solid electrolyte interfacial (SEI) layer development and faster kinetics of both the Li+ diffusion, as well as the charge transfer reaction.
引用
收藏
页码:57041 / 57047
页数:7
相关论文
共 50 条
  • [1] Improved rate performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery by carbon coating
    Liang Xue
    Youhao Liao
    Liang Yang
    Xiaoping Li
    Weishan Li
    Ionics, 2015, 21 : 1269 - 1275
  • [2] Improved rate performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery by carbon coating
    Xue, Liang
    Liao, Youhao
    Yang, Liang
    Li, Xiaoping
    Li, Weishan
    IONICS, 2015, 21 (05) : 1269 - 1275
  • [3] Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery
    Gao, Xuan-Wen
    Deng, Yuan-Fu
    Wexler, David
    Chen, Guo-Hua
    Chou, Shu-Lei
    Liu, Hua-Kun
    Shi, Zhi-Cong
    Wang, Jia-Zhao
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (01) : 404 - 411
  • [4] High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery
    Zhang, Qingtang
    Mei, Juntao
    Wang, Xiaomei
    Tang, Fuling
    Fan, Weifeng
    Lu, Wenjiang
    ELECTROCHIMICA ACTA, 2014, 143 : 265 - 271
  • [5] Improved electrochemical performance of LiNi0.5Mn1.5O4 as cathode of lithium ion battery by Co and Cr co-doping
    Dongrui Chen
    Benzhen Li
    Youhao Liao
    Hongwei Lan
    Haibin Lin
    Lidan Xing
    Yating Wang
    Weishan Li
    Journal of Solid State Electrochemistry, 2014, 18 : 2027 - 2033
  • [6] Improved electrochemical performance of LiNi0.5Mn1.5O4 as cathode of lithium ion battery by Co and Cr co-doping
    Chen, Dongrui
    Li, Benzhen
    Liao, Youhao
    Lan, Hongwei
    Lin, Haibin
    Xing, Lidan
    Wang, Yating
    Li, Weishan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (07) : 2027 - 2033
  • [7] Influence of Roasting Temperature on Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Battery
    Niu, Lei
    Geng, Shan
    Li, Hongliang
    Du, Songli
    Cui, Xiaoling
    Li, Shiyou
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (02)
  • [8] Spray drying synthesis and electrochemical performance of lithium ion battery cathode materials LiNi0.5Mn1.5O4
    Hu, Piao
    Zhong, Sheng-Kui
    Zhang, Cheng
    Yang, Yue
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2015, 44 (08): : 2184 - 2190
  • [9] Study of Synthesis and Properties of Spinel LiNi0.4Mn1.5Cr0.1O4 as Cathode for Lithium Ion Batteries
    Liu, Guoqiang
    Liu, Guangyin
    Shi, Xiaoyan
    MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, PTS 1-3, 2011, 160-162 : 513 - 517
  • [10] Improved electrochemical performance of doped-LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Kim, Hyun-Ju
    Jin, Bong-Soo
    Doh, Chil-Hoon
    Bae, Dong-Sik
    Kim, Hyun-Soo
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (06) : 851 - 854