机构:
Univ Lisbon, Dept Matemat, Fac Ciencias, Lisbon, PortugalUniv Lisbon, Dept Matemat, Fac Ciencias, Lisbon, Portugal
Chemetov, Nikolai
[1
]
Cipriano, Fernanda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Lisbon, Portugal
Ctr Matemat & Aplicacoes, Lisbon, PortugalUniv Lisbon, Dept Matemat, Fac Ciencias, Lisbon, Portugal
Cipriano, Fernanda
[2
,3
]
机构:
[1] Univ Lisbon, Dept Matemat, Fac Ciencias, Lisbon, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Lisbon, Portugal
The theory of turbulent Newtonian fluids shows that the choice of the boundary condition is a relevant issue because it can modify the behavior of a fluid by creating or avoiding a strong boundary layer. In this study, we consider stochastic second grade fluids filling a two-dimensional bounded domain with the Navier-slip boundary condition (with friction). We prove the well-posedness of this problem and establish a stability result. Our stochastic model involves a multiplicative white noise and a convective term with third order derivatives, which significantly complicate the analysis. (C) 2017 Elsevier Inc. All rights reserved.
机构:
Univ Bio Bio, Fac Ciencias, Dept Ciencias Basicas, CCE UBB, Campus Fernando May,Ave Andres Bello 720, Chillan, ChileUniv Fed Delta Parnaiba DM, Parnaiba, Piaui, Brazil
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Lisbon, Portugal
Ctr Matemat & Aplicacoes, Lisbon, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Lisbon, Portugal
Cipriano, Fernanda
Didier, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Lisbon, Portugal
Ctr Matemat & Aplicacoes, Lisbon, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Lisbon, Portugal
Didier, Philippe
Guerra, Silvia
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Matemat & Aplicacoes, Lisbon, Portugal
Univ Nova Lisboa, NOVA Sch Business & Econ, Lisbon, Portugal
Nova Sch Business & Econ, Lisbon, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Lisbon, Portugal
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaUniv Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, Austria
Hausenblas, Erika
Razafimandimby, Paul Andre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaUniv Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, Austria