Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces

被引:63
|
作者
Dehm, G
Scheu, C
Ruhle, M
Raj, R
机构
[1] Max Planck Inst Met Res, D-70174 Stuttgart, Germany
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1016/S1359-6454(97)00257-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thin Cu films and Cu/Ti bilayers were grown on (0001)alpha-Al2O3 by molecular beam epitaxy (MBE) at substrate temperatures ranging from 373 K to 473 K. Results on growth behaviour, low-energy interface orientation relationships and the nature of bonding at the interfaces are reported. Transmission electron microscopy (TEM) and in-situ reflection high-energy electron diffraction (RHEED) studies show that Cu/Ti bilayers nucleate and grow epitaxially on the Al2O3 substrates with an (111)(Cu)[110](Cu)parallel to(0001)(Ti)[<2(11)over bar 0>](Ti)parallel to(0001)(Al2O3) [<10(1)over bar 0>](Al2O3) orientation relationship. In contrast, Cu films on (0001)alpha-Al2O3 grow in two stages. Initially, the Cu nuclei have random orientation but they realign with increasing film thickness into an heteroepitaxial (111)(Cu)[110](Cu)parallel to(0001)(Al2)O-3[<10(1)over bar 0>](Al2)O-3 orientation relationship. In high-resolution transmission electron microscopy (HRTEM) no reaction phases are observed at the atomically sharp Cu/Al2O3 and Ti/Al2O3 interfaces. Electron energy-loss spectroscopy (EELS) of the interfaces reveals bonding between copper or titanium and the oxygen sublattice of Al2O3, The interfacial widths of copper and titanium atoms involved in the bonding are estimated using the characteristic absorption edge data. In the case of Ti/Al2O3 the interfacial width is estimated to be 0.5 nm +/- 0.1 nm. The lower affinity of Cu to oxygen results in a smaller interfacial width of 0.34 nm +/- 0.06 nm. These values correspond to the apparent fraction of the metal layers that participate in the bonding with the oxygen sublattice of (0001)alpha-Al2O3. (C) 1998 Acta Metallurgica Inc.
引用
下载
收藏
页码:759 / 772
页数:14
相关论文
共 50 条
  • [1] Electron energy-loss spectroscopy at Cu/Al2O3 and Ti/Al2O3 interfaces
    Scheu, C
    Dehm, G
    Mullejans, H
    Ruhle, M
    INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, PT 1, 1996, 207 : 181 - 184
  • [2] THERMODYNAMIC ANALYSIS OF ALUMINATE FORMATION AT FE/AL2O3 AND CU/AL2O3 INTERFACES
    TRUMBLE, KP
    ACTA METALLURGICA ET MATERIALIA, 1992, 40 : S105 - S110
  • [3] XPS STUDIES OF CHARACTERIZED CU AL2O3, ZN AL2O3 AND CU-ZN AL2O3 CATALYSTS
    MORETTI, G
    SURFACE AND INTERFACE ANALYSIS, 1991, 17 (10) : 745 - 750
  • [4] Microstructure and modifications of Cu/Al2O3 interfaces
    Scheu, C
    Stein, W
    Klein, S
    Wagner, T
    Tomsia, AP
    Rühle, M
    ZEITSCHRIFT FUR METALLKUNDE, 2001, 92 (07): : 707 - 711
  • [5] Bonding of Al2O3 to Cu with Ti foil
    陈铮
    方芳
    赵其章
    楼宏青
    李志章
    China Welding, 1998, (01) : 71 - 77
  • [8] Fabrication of Cu dispersed Al2O3 nanocomposites using Al2O3/CuO and Al2O3/Cu-nitrate mixtures
    Oh, ST
    Lee, JS
    Sekino, T
    Niihara, K
    SCRIPTA MATERIALIA, 2001, 44 (8-9) : 2117 - 2120
  • [9] Nanoscale analysis of multilayer interfaces of W/Al2O3/Ti/Cu
    Ohta, S
    Gotoh, D
    Sakaguchi, N
    Takahashi, H
    INTERFACE SCIENCE, 1999, 7 (02) : 191 - 196
  • [10] Cu segregation at the Al(Cu)Al2O3 interface
    Copel, M
    Rodbell, KP
    Tromp, RM
    APPLIED PHYSICS LETTERS, 1996, 68 (12) : 1625 - 1627