共 50 条
The effect of ethynyl substitution and cyclopenta fusion on the ultraviolet absorption spectra of polycyclic aromatic hydrocarbons
被引:32
|作者:
Marsh, ND
[1
]
Mikolajczak, CJ
[1
]
Wornat, MJ
[1
]
机构:
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
基金:
美国国家科学基金会;
关键词:
UV spectra;
polycyclic aromatic hydrocarbons;
ethynyl-PAH;
cyclopenta-fused PAH;
D O I:
10.1016/S1386-1425(99)00280-2
中图分类号:
O433 [光谱学];
学科分类号:
0703 ;
070302 ;
摘要:
We have examined the UV spectra of six newly-synthesized ethynyl-PAH (1-ethynylnaphthalene, 5-ethynylacenaphthylene, 1-ethynylanthracene, 9-ethynylphenanthrene, 3-ethynylfluoranthene, and 1-ethynylpyrene) and five corresponding CP-PAH (acenaphthylene, aceanthrylene, acephenanthrylene, cyclopenta[cd]fluoranthene, and cyclopenta[cd]pyrene) and have found the following systematic behavior: ethynyl-substitution results in average bathochromic shifts of 5 nm for the lower-wavelength beta- and beta'-bands and of 18 nm for the higher-wavelength p-band, as well as an amplification of the p-band with respect to the P-band; the addition of a peripheral cyclopenta ring results in average bathochromic shifts of 7 nm in the beta-band, 16 nm in the beta'-band, and 44 nm in the p-band, compared to the wavelengths in the corresponding unsubstituted PAH. The addition of a cyclopenta ring also decreases the resolution of vibrational fine structure in the cases where the fine structure is particularly intense in the spectrum of the unsubstituted PAH. The effects of ethynyl substitution on the UV spectra of PAH are sufficiently consistent that new ethynyl-PAH should be identifiable based on their UV spectra alone. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1499 / 1511
页数:13
相关论文