A Semantic Based Framework for the purpose of Big Data Integration

被引:1
|
作者
Ostrowski, David [1 ]
Kim, Mira [2 ]
机构
[1] Ford Motor Co, Dearborn, MI 48121 USA
[2] Univ Calif Irvine, Dcpt EECS, Irvine, CA 92617 USA
关键词
D O I
10.1109/ICSC.2017.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most substantial opportunities in Big Data is to integrate disparate data sources across the enterprise. To realize this goal it can he valuable to leverage environments developed for high speed parallel processing as well as toolkits supporting the development and maintenance of semantic information. In support of this approach a proposed framework and methodology is presented to utilize an ontology-based data integration strategy. Our approach supports a rule-based translation to generate new ontology versions within a fast prototyping environment leveraging the Jena API within the context of the Apache Spark environment.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 50 条
  • [1] Semantic-Based Intelligent Data Clean Framework for Big Data
    Wang, Jia
    Song, Zhijun
    Li, Qian
    Yu, Jun
    Chen, Fei
    [J]. 2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 448 - 453
  • [2] Semantic-based Big Data integration framework using scalable distributed ontology matching strategy
    Mountasser, Imadeddine
    Ouhbi, Brahim
    Hdioud, Ferdaous
    Frikh, Bouchra
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2021, 39 (04) : 891 - 937
  • [3] Semantic-based Big Data integration framework using scalable distributed ontology matching strategy
    Imadeddine Mountasser
    Brahim Ouhbi
    Ferdaous Hdioud
    Bouchra Frikh
    [J]. Distributed and Parallel Databases, 2021, 39 : 891 - 937
  • [4] Towards a Semantic Extract-Transform-Load (ETL) framework for Big Data Integration
    Bansal, Srividya K.
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 521 - 528
  • [5] A RESTful and semantic framework for data integration
    Fuentes-Lorenzo, Damaris
    Sanchez, Luis
    Cuadra, Antonio
    Cutanda, Mar
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2015, 45 (09): : 1161 - 1188
  • [6] Integration and classification approach based on probabilistic semantic association for big data
    VandanaKolisetty, Vishnu
    Rajput, Dharmendra Singh
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (04) : 3681 - 3694
  • [7] Integration and classification approach based on probabilistic semantic association for big data
    Vishnu VandanaKolisetty
    Dharmendra Singh Rajput
    [J]. Complex & Intelligent Systems, 2023, 9 : 3681 - 3694
  • [8] Integration of Big Data Using Semantic Web Technologies
    Ostrowski, David
    Rychtyckyj, Nestor
    MacNeille, Perry
    Kim, Mira
    [J]. 2016 IEEE TENTH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2016, : 381 - 384
  • [9] Classification framework and semantic labeling for Big Earth Data
    Wang, Juanle
    Bu, Kun
    Yan, Dongmei
    Wang, Jingyue
    Duan, Bowen
    Zhang, Min
    He, Guojin
    [J]. BIG EARTH DATA, 2023, 7 (03) : 886 - 903
  • [10] A Framework for Big Data Security Analysis and the Semantic Technology
    Yao, Yuangang
    Zhang, Lei
    Yi, Jin
    Peng, Yong
    Hu, Weihua
    Shi, Lei
    [J]. 2016 6TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS 2016), 2016, : 246 - 249