Uncertainty Quantification with Invertible Neural Networks for Signal Integrity Applications

被引:0
|
作者
Bhatti, Osama Waqar [1 ]
Akinwande, Oluwaseyi [1 ]
Swaminathan, Madhavan [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Sch Mat Sci & Engn, 3D Syst Packaging Res Ctr PRC, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Invertible neural networks; jacobian; uncertainty quantification; differential via-pair; signal integrity;
D O I
10.1109/NEMO51452.2022.10038959
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a machine learning based tool to quantify uncertainty for prediction problems regarding signal integrity. Harnessing invertible neural networks, we convert the inverse posterior distribution given by the network to address uncertainty in frequency responses as a function of design space parameters. As an example, we consider a differential plated-through-hole via in package core and predict S-parameters from its geometrical properties. Results show 3.3% normalized mean squared error when compared with responses from a fullwave EM simulator.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Conservative Gaussian Process Models for Uncertainty Quantification and Bayesian Optimization in Signal Integrity Applications
    Manfredi, Paolo
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2024, 14 (07): : 1261 - 1272
  • [2] Photoacoustic Quantification of Tissue Oxygenation Using Conditional Invertible Neural Networks
    Noelke, Jan-Hinrich
    Adler, Tim J.
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Bender, Christoph J.
    Tizabi, Minu D.
    Seitel, Alexander
    Maier-Hein, Lena
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (09) : 3366 - 3376
  • [3] Multiport VNA Measurement Uncertainty - Signal Integrity Applications
    Grossman, Brett
    Peterson, Michael
    Torres, Jose
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), 2011, : 619 - 623
  • [4] Uncertainty quantification for predictions of atomistic neural networks
    Vazquez-Salazar, Luis Itza
    Boittier, Eric D.
    Meuwly, Markus
    CHEMICAL SCIENCE, 2022, 13 (44) : 13068 - 13084
  • [5] A method for inferring signal strength modifiers by conditional invertible neural networks
    Farkas, Mate Zoltan
    Diekmann, Svenja
    Eich, Niclas
    Erdmann, Martin
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [6] Surrogate approach to uncertainty quantification of neural networks for regression
    Kang, Myeonginn
    Kang, Seokho
    APPLIED SOFT COMPUTING, 2023, 139
  • [7] An Enhanced Particle Filter for Uncertainty Quantification in Neural Networks
    Carannante, Giuseppina
    Bouaynaya, Nidhal C.
    Mihaylova, Lyudmila
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 122 - 128
  • [8] Bayesian Neural Networks Uncertainty Quantification with Cubature Rules
    Wang, Peng
    He, Renke
    Zhang, Qibin
    Wang, Jikai
    Mihaylova, Lyudmila
    Bouaynaya, Nidhal C.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Uncertainty Quantification Methods for Neural Networks Pattern Recognition
    Tolo, Silvia
    Santhosh, T. V.
    Vinod, Gopika
    Oparaji, Uchenna
    Patelli, Edoardo
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [10] Autoencoder-extended Conditional Invertible Neural Networks for Unfolding Signal Traces
    Erdmann, M.
    Hafner, K.
    Schulte, J.
    Straub, M.
    20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438