NUMERICAL SOLUTIONS TO HEAT EQUATIONS VIA THE SPECTRAL METHOD

被引:0
|
作者
Abdelwahed, Mohamed [1 ]
Chorfi, Nejmeddine [1 ]
Radulescu, Vicentiu [2 ,3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Heat equation; Euler's method; spectral discretization; error estimate; A-POSTERIORI ANALYSIS; ELEMENT DISCRETIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study a discretized version of the heat equation. For the time semi-discrete problem, we use an implicit Euler's scheme, and for the space discretization we used the spectral method. We estimate for the error between the exact and approximated discrete solutions, and illustrate the features of our method with numerical examples.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Numerical solutions for some coupled nonlinear evolution equations by using spectral collocation method
    Khater, A. H.
    Temsah, R. S.
    Callebaut, D. K.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (7-8) : 1237 - 1253
  • [2] Numerical Solutions of Linear Abel Integral Equations Via Boubaker Polynomials Method
    Abdullah, Jalil Talab
    Ali, Haleema Swaidan
    Ali, Waleeda Swaidan
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (05) : 1617 - 1624
  • [3] NUMERICAL ANALYSIS OF SOME FRACTIONAL ORDER DIFFERENTIAL EQUATIONS VIA LEGENDRE SPECTRAL METHOD
    Khan, Aziz
    Naz, Hafsa
    Sarwar, Muhammad
    Shah, Kamal
    Alqudah, Manar A.
    Abdeljawad, Thabet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)
  • [4] Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
    Doha, Eid H.
    Bhrawy, Ali H.
    Ezz-Eldien, Samer S.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1494 - 1503
  • [5] A NUMERICAL METHOD FOR FINDING SOLUTIONS OF NONLINEAR EQUATIONS
    KIZNER, W
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (02): : 424 - 428
  • [6] A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
    Crank, J
    Nicolson, P
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) : 207 - 226
  • [7] A PRACTICAL METHOD FOR NUMERICAL EVALUATION OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS OF THE HEAT-CONDUCTION TYPE
    CRANK, J
    NICOLSON, P
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1947, 43 (01): : 50 - 67
  • [8] Numerical solutions of time-fractional coupled viscous Burgers’ equations using meshfree spectral method
    Manzoor Hussain
    Sirajul Haq
    Abdul Ghafoor
    Ihteram Ali
    Computational and Applied Mathematics, 2020, 39
  • [9] A Chebyshev Pseudo-Spectral Method For The Numerical Solutions Of Distributed Order Fractional Ordinary Differential Equations
    Oloniiju, Spina Daniel
    Goqo, Sicelo Praisegod
    Sibanda, Precious
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 132 - 141
  • [10] Numerical solutions of time-fractional coupled viscous Burgers' equations using meshfree spectral method
    Hussain, Manzoor
    Haq, Sirajul
    Ghafoor, Abdul
    Ali, Ihteram
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01):